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Preface

The safe operation of computer systems continues to be a key issue
in many applications where people, environment, investment, or
goodwill can be at risk. Such applications include medical, railways,
power generation and distribution, road transportation, aerospace,
process industries, mining, military and many others.

This book represents the proceedings of the 12th International
Conference on Computer Safety, Reliability and Security, held in
Poznafi, Poland, 27-29 October 1993. The conference reviews the
state of the art, experiences and new trends in the areas of computer
safety, reliability and security. It forms a platform for technology
transfer between academia, industry and research institutions. In
an expanding world-wide market for safe, secure and reliable
computer systems SAFECOMP'93 provides an opportunity for
technical developers, users, and legislators to exchange and review
the experience, to consider the best technologies now available and
to identify the skills and technologies required for the future. The
papers were carefully selected by the International Program Com-
mittee of the Conference. The authors of the papers come from 16
different countries. The subjects covered include formal methods
and models, safety assessment and analysis, verification and
validation, testing, reliability issues and dependable software tech-
nology, computer languages for safety related systems, reactive
systems technology, security and safety related applications. As to
its wide international coverage, unique way of combining partici-
pants from academia, research and industry and topical coverage,
SAFECOMP is outstanding among the other related events in the
field.

The reader will get insight into the basic status of computer safety,
reliability and security (through invited presentations) and will
receive a representative sample of recent results and problems in
those fields presented by experts from both industrial and academic
institutions.

The response to the Call for Papers produced many more good
papers than could be included in the programme. I must thank all
the authors who submitted their work, the presenters of the papers,
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the International Program Committee and National Organising
Committee, the Sponsor and Co-sponsors for their efforts and
support. Through their strong motivation and hard work the
Conference and this book have been enabled.

Janusz G6rski Poznafi, Poland
August 1993
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Safety - status and perspectives

Tom Anderson
Department of Computing Science

Mw University of Newcastle upon Tyne, NEI 7RU, UK

Abstract
Safety can be all things to all men - that is, different people in
different situations will, quite legitimately, interpret the term
"safety" in different ways. This paper expresses a personal
perspective on safey as an engineering concern.

1 Introduction
Delegates will be aware that this is the 12th occasion of presenting SAFECOMP, a
conference which, under the auspices of EWICS Technical Committee 7, has laid
stress on the importance of safety in the context of computing systems since the
very first SAFECOMP in 1979. Consequently, the event has an enviable lineage
with respect to a topic that is recognised to be of rapidly increasing significance,
commensurate with the growth in automatic control of critical applications. It
seems inevitable that these trends will continue and accelerate, given current
projections for the semiconductor and telecommunication industries. Over the past
15 years, work on both research and system development has enhanced our
understanng of the issues and techniques relating to safety in computing systems.
However, much remains to be done, in further advancing the discipline and in more
widely promulgating the current state of the art. In this brief perspective I have
taken the opportunity to make some elementary observations on the tenets of safe
computing systems; if any of these are considered provocative or unsound I
welcome correction.

2 Definition
Because "safe" and "safety" are words in everyday use, they have dictionary
definitions and popular interpretations. These interpretations can differ widely: for
the general public, for politicians, for professionals (lawyers, engineers, regulators
etc), across industrial sectors, and over time (especially after a major accident). A
scientist or engineer recognises the range of interpretations, but must nevertheless
adopt a specific working definition - and thus accepts the consequence that because
others may select an alternative definition, conflicts may need to be resolved if
confusion is to be avoided.
The usual starting point for a definition of safety is that a system is safe if it will
not kill anyone. However, numerous points then need clarification, such as "what
about multiple deaths?", "what about injuries, severe and minor?", "what about
environmmen damage, with implications for human well-being?", "what about vast
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financial losses, with implications for the well-being of some?". An (inadequate)
escape route is to assert that a system is safe if it will not harm anyone. But does
this mean never harm anyone, under any possible circumstances? Only when these,
and other, questions are answered would we have a semblance of a definition.
(There is, of course, no single "correct" definition, so these questions will not be
answered here!) One way forward is to define a system to be safe if it will not cause
an accident, thereby postponing (albeit briefly) the definition of what constitutes an
accident. Even given an agreed definition of a safe system, it is then vital to
examine how degrees of unsafeness should be characterised, which leads on to the
notion of risk to capture the likelihood and magnitude of losses incurred through
use of the system.
From an engineer's viewpoint, ensuring that these issues are addressed and resolved
is much more important than the details of their resolution in a particular case.

3 Misconceptions
Despite, or perhaps because of, the widespread use of safety concepts, a number of
misconceptions are frequently encountered in the wider computing community -
SAFECOMP delegates will, I trust, concur with my critique of the following
aberrant assertions.
(a) Safety is paramount. If this were true, then in almost all cases, the proper

course of action would be not to implement the system, or at least not to
operate it. Safety is an attribute of a system which frequently conflicts with
other desirable attributes. The design engineer has the difficult task of striving
to achieve the optimum compromise between safety and the other required
characteristics for the system, all within budgetary and other resource
constraints.

(b) Safety is an absolute. The notion of absolute safety can be formulated and
discussed if necessary, but the real engineering issues concern levels of safety
and tradeoffs between safety and other system properties. Consider the
following questions: How safe should the system be designed to be? How
unsafe could the system be and still be considered adequately safe? How safe is
the implemented system? How safe has the system been during operation? By
comparison the question "Is the system absolutely safe?" seems poiktless.

(c) Safety can't be quantified (less extreme versions: safety ought not to be
quantified; avoid quantification in safety analyses). On the contrary, it is
essential that safety be quantified - to the extent that this is feasible, and fully
acknowledging the limitations and imprecision of measurement techniques.
Quantified analysis of safety should be viewed as the normal engineering goal,
and consequently the inability to quantify safety should be recognised as a
deficiency - in which case subjective rankings or objective comparisons may be
employed as a weaker alternative.

(d) Safety must be guaranteed. Since safety does not equate to death or taxes such a
guarantee must be regarded as a forlorn hope, other than in the sense of a
warranty establishing corporate liability.
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(e) Safety is unique. Safety is a highly significant system attribute because of the
importance we rightly attach to the lives of others. Nevertheless, it has very
much in common with other system attributes such as reliability and security,
and safety engineering can and does benefit greatly from the techniques
developed for other aspects of dependability in systems - and vice-versa of
course. [A personal aside. At SAFECOMP'83 in Cambridge I asserted (as a
panellist) that the concepts of safety and reliability were essentially identical,
differing only in the criterion which specified success. Although I still believe
this to be true, I have learned a little in the last ten years, and do not expect to
reiterate this academic and potentially misleading observation in Poznan at
SAFECOMP'93.]

4 Axioms
In contrast to the above, the following truths are held to be self-evident.
(a) Safety is a system attribute. This is sometimes taken to imply that safety is

solely a property of the overall application system (e.g. nuclear power plant)
operating in the real-world environment; a very narrow interpretation then
misleads by inferring that subsystems do not have this property (contradicted
by axioms b and c below). A more generic use of the term system is much to
be preferred, encompassing subsystems, units, modules, components etc., in
which case axiom a is almost tautological.

(b) Computing systems can kill. See Leveson and Turner [2].
(c) Software can kill. See Leveson and Turner [2]. Obviously, the software directs

the computing system which in turn acts via the controlled equipment -
analogously, most murderers make use of a weapon.

(d) Perfection is unattainable. Samuel Butler advised "Strive for imperfection -
there's some change of getting it". Dijkstra warned "Testing can show the
presence, but never the absence of faults". Lebesgue cautions "Logic makes us
reject certain arguments, but it cannot make us believe any argument". Juvenal
asked "But who is to guard the guards themselves?". Brookes summed it all up
- '"here is inherently no silver bullet".

(e) There's safety in numbers. Although this is a well known English phrase it is
perhaps a little too ambiguous to be axiomatic. A literal interpretation is
unusual and the benefits of quantification have already been suggested; here I
wish to take the standard usage, which suggests that members within a group
are less exposed to attack than isolated individuals, and thereby make the
standard argument in favour of redundancy. Any single entity can fail, and to
avoid a single point of failure alternative mechanisms should be available (eg.
retry, or a spare, or diversity, or fail-safe).

5 Engineering Safe Computing Systems
The tasks of safety engineering are clearly manifold: to establish the safety
requirements for the system and its subsystems, to formulate safety policies,
specifications and strategies, to design for safety, to conduct hazard and safety
analyses, to compose the safety case and gain certification for the system, to



6

implement, install, operate and maintain the system in accordance with all of the
preceding. All are of vital importance (literally), which makes prioritisation rather
difficult. I would place particular emphasis on achieving safety, and feel that the
specific topics of requirements, validation and fault-tolerance deserve special
mention - but this may merely be a consequence of personal prejudice. In any case,
the above list of topics is driven by system life-cycle stages, and we should also
include management, procedures, documentation, standards, human factors and reai-
time considerations.
My position in 1989 was stated as:

"I would commend three attributes to those involved in the construction of
[safe] computing systems. First, vigilance, in avoiding and eliminating
faults; second, diversity, to provide protection against the consequences of
faults; and third, simplicity, the hand-maiden of dependability" [1].

Almost five years on, the only change I wish to make is to reverse the ordering.
Lastly, I would like to refer readers to the most enjoyable text on system safety I
have encountered [3), which happens to be in the domain of railway safety and the
lessons to be learnt from accidents; as well as being highly instructive, the book
provides this closing quotation to emphasise that even safety engineers can learn
from their mistakes:

Out of this nettle, Danger
We pluck this flower, Safety

Henry IV (Part I)

References
1. Anderson T (ed). Safe & Secure Computing Systems - Preface. Blackwell

Scientific, Oxford, 1989
2. Leveson NG, Turner CS. An Investigation of the Therac-25 Accidents. IEEE

Computer 1993; 26,7:18-41
3. Rolt LTC. Red for Danger (3rd edition). Pan Books, London, 1976

• . . I L|



Session 1

FORMAL METHODS
AND

MODELS

Chair: G. Cleland
University of Edinburgh, UK

i• iI l I i I I I I I I i I i Ii ,...



Data Flow Control Systems: an Example of
Safety Validation

Cinzia Bemardeschi, Luca Simoncini
Department of Information Engineering, University of Pisa

Pisa, Italy

Andrea Bondavalli
CNUCE-CNR

Pisa, Italy

Abstract

In this paper a methodology to develop safety-critical control
systems is proposed. These systems continuously interact with
the physical environment, and those admitting at least one failure
causing a catastrophe are classified as safety-critical. Our
methodology takes into account both the control system
(controller) and the physical environment (plant). After the
requirements analysis, the system is developed following data
flow model, i.e., described as a static data flow network of nodes
executing concurrently and communicating asynchronously. The
plant is used as the test case for the validation of the controller
and their composition is analysed to show whether hazards are
reached. To this purpose we apply a transformation from data
flow networks to LOTOS specifications. The transformation
preserves the semantics of the original network and data flow
network properties can be derived and proved on the LOTOS
specification using available support tools. A train set example
for the contact-free moving of trains on a circular track divided
into sections is shown as an application of the methodology.

1 Introduction

Control systems are computing systems which continuously interact with the
physical environment, e.g. traffic control or industrial process control systems.
Many control systems are safety-critical, i.e. systems for which at least one failure
exists that can cause a catastrophe. Therefore, in addition to their functional
capabilities, these systems require specified levels of dependability. In the framework
of safety-critical systems, one approach to improve the level of dependability is to
use formal specification and verification in conjunction with other methods of
software development such as testing and fault tolerance. The analysis of the critical
issues of a control system plays a vital role in the development of safety-critical
systems. Critical issues address what the system should not do and allow to
concentrate on the elimination and control of the hazards. The study of the critical
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issues of the system, allows us to derive the constraints necessary to guarantee a
safe behaviour of the system (safety constraints) and the strategies to realise it
(safety strategies) [I]. The validation phase is as important as requirements analysis.
Validation is the activity that aims to check that the actual behaviour of the
developed system is as expected.

Data flow is a paradigm for concurrent computations. A data flow network is
composed by a set of nodes (or processes) all executing concurrently and
asynchronously. They communicate by exchanging messages, representing data
items, over asynchronous communication channels (following a FIFO policy). The
computation proceeds in a data driven manner: a node of the network is ready to
execute as soon as the required data tokens are available. Data flow is receiving great
attention being known for its suitability for achieving a high degree of execution
parallelism, thus allowing to improve performance, but has other useful
characteristics as well. A data flow network is usually very close to the intuitive
representation of a control system, that is the translation from the conceived system
to a data flow graph is straightforward, as well as to inspect the data flow graph to
determine which aspects of the system are represented [2], [3]. This makes data flow
generally recognised as a convenient programming paradigm for the development of
control systems. The referential transparency property admitted when nodes compute
functions, by which two executions of the same node with the same input data
produce equal output results, makes data flow "inherently fault tolerant": it is
possible to tolerate simple failures by re-evaluating the same function on the same
input data [4], [5]. If a non deterministic behaviour of nodes is allowed, still the
strong isolation and information hiding enforces a good confinement useful for
setting error confinement areas around modules by means of appropriate consistency
checks. The property of composability which puts in direct relation the general
behaviour of a system from its constituent parts [6], [7] helps verification and
validation. Lastly, structural models for software reliability assessment can be
applied since all data necessary to their use can be obtained by a simpleinstrumentation of software code [8].

In this paper a systems development methodology is proposed. After the
requirements analysis, the system is developed following the computational model
based on the Jonsson's formalism [7]. In the validation phase, the specification of
the physical environment is assumed as the test case for the control system: the
plant and the controller are composed and the resulting behaviour is analysed to be
sure that hazards are never reached in the system. To this purpose, we apply a
transformation from data flow networks to LOTOS (Language Of Temporal
Ordering Specification) [9] specifications. The transformation maintains the data
flow network properties which can be derived and proved on the LOTOS
specification. Available LOTOS software support tools are then used [10]. The
adequacy of the proposed methodology is shown through the design and the
validation of a simple control system: a train set example for the contact-free
moving of trains on a circular track divided into sections [1], [11]. The rest of this
paper is as follows. Section 2 is devoted to the definition of our methodology,
including a description of the data flow formalism adopted, the transformation and
its properties. Section 3 develops the example of the train set to show how the
methodology can be applied. Lastly, Section 4 contains our conclusion.
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2 System Development Methodology

The proposed development methodology takes into account the parallel interaction
between a plant and a controller which must eliminate unsatisfactory behaviours of
the plant. The interface between the plant and the controller contains sensors and
actuators. Sensors detect events in the plant and send signals to the controller. Upon
reception of the signals the controller can take actions by issuing appropriate control
commands through actuators. The analysis of the critical issues addressing what the
system should not do, allow to define the hazards for the system into consideration
and their elimination and control. The analysis is performed in two phases: the first
phase to identify the real world properties relevant to the critical behaviour of the
system and the second phase to specify the system behaviour required at the interface
with the environment, i.e. the sensors and actuators. Thus the constraints necessary
to guarantee a safe behaviour of the system (safety constraints) and the strategies to
realise it (safety strategies) may be derived.

Then the system realising the safety strategy is developed following a data flow
computational model. Since we shall use the specification of the physical
environment as the test case for the control system in the validation, we shall model
also the plant. As previously mentioned we adopt the formalism for the
specification of data flow network proposed in [7] in which the semantics of the
networks is based on traces. Here we give some definitions and a brief explanation
on this model. Given a data flow network N, let V be the set of data items
exchanged over the channels. We denote by V* the set of finite sequences on V and
by <> the empty sequence.

Definition: A data flow node P is a tuple <Ip, Op, Sp, sop, Rp, FAIRp>
where:
Ip is the set of input channels;
Op is the set of output channels with (IprFOp) = 0;

Sp is the set of states; sOp is the initial state, s0 pe Sp;

Rp is the set of firings. A firing F is a tuple F=<s, Xin, s', Xout> where s, s'c Sp,

Xin is a mapping from Ip to V* and Xout is a mapping from Op to V*.

FAIRp a ? (Rp) is a finite collection of fairness sets. If FAIRp=Rp, then the
node executes firings until no more data are present on the input channels.

For the sake of this paper, the meaning of a firing <s, Xin, s', Zout> can be

assumed as follows: when the node is in state s and for each input channel inpl Ip

the sequence Xin(inp) is a prefix of the content of the channel (i.e. the firing is
executable), then these sequences may be consumed, while the node changes its state

to s' and the sequence Xout(out) is produced on each output channel oute Op. Note
that the empty sequence <> is a prefix of each sequence of data.

A data flow network N consists of a set PN of data flow nodes such that in PN
each channel occurs at most once as an input channel and at most once as an output

' !. .. IIll i• MI n lit •Jfl IW u•A
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channel. The network is obtained connecting input channels Lo output channels with
the same name and a network transition can be generated by the firing of a node or
by a communication event, where a communication event can be either an
input event or an output event. Communication events occur when a data item is
inserted (removed) into (from) an input (output) channel of the network. CN denor "s
the set of all the channels of the network. A computation of the network is a
sequence of transitions of the network. Informally a computation of the network is a
complete run of the network in which all nodes perform fiings according to their
definition and all channels behaves like unbounded FIFO channels. The semantics of
the network is the set of its traces; a trace represents the interleaving of the
communication events during a computation.

The use of information about the presence/absence of data items and the data driven
asynchronous execution of data flow nodes in data flow networks, make reasoning
about these networks and their semantics very difficult. To perform the semantic
analysis of data flow networks, we apply a transformation from data flow networks
to process algebras specifications using the LOTOS formal specification language
[9]. LOTOS represents recent work on the combination of CCS (with some
extension) [12] to describe the behaviour of the system and an algebraic formalism
for the definition of data types. Software support tools have been developed allowing
the simulation, the compilation and the proof of properties of a LOTOS
specification [10].

The transformation is obtained by mapping each node and each channel of the
network into a process in the process algebras and then all the processes are
composed in parallel with synchronisation on the proper set of actions to realise the
global behaviour of the network [13]. The names of gates in the specification are
directly derived from the names of the channels. For each channel "a"e CN, "a#" is
the gate corresponding to get a data from the channel "a" while "a" is the gate
corresponding to put a data on the same channel "a". Let CP be the process which
simulates the behaviour of a channel "a" of N (CP behaves like a FIFO buffer) and
nodeP be the process that realises the behaviour of the data flow node P, the
specification of the network is:
Mification netN[EgatesN] : noexit

<data type definition>

hie I[Cgatesq-EgatesN]I In
(CP[a, a#] "I ...<VcE CN>... III CP[b, b#])

I[CgatesN-EgatesN]I (nodeP[Flp#, Op] III ...<VQE PN>... III nodeQ[IR#, OR])
a (* net*)
where CgatesN are the gates corresponding to get (put) from (onto) the whole sets of
channels of N, EgatesN are the gates corresponding to get (put) from (onto) the
input (output) external channels of N. Furthermore, the notation Ip# (Op) is used to
denote the set of "a#" ("a") gates for the input (output) channels of the node P. The
set of processes associated to channels execute disjoint actions, so they are put in
parallel with an empty set of synchronisation gates (111 operator). The same applies
to the set of processes associated to the nodes. These two sets of processes
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synchronise on the set of all the actions defined for the two behaviour expressions.
The network specification has the same behaviour of the original data flow network
and the formal verification methods of the process algebras can be applied to prove
properties of the original network. Interested readers may find more details on the
transformation itself and a prove that the transformation preserves the data flow
network properties, i.e., the LOTOS specification has the same behaviour of the
network from which it has been derived, in [13]. The previous transformation is
defined for a class of data flow networks in which the firings of the nodes do not
require sophisticated synchronisation mechanisms between the processes associated
to the channels and the processes which simulates the behaviour of the nodes. The
transformation for general networks is described in [14].

To summarise, our methodology is based on:
"* modelling the physical environment as a part of the overall system (plant);
"* executing the requirements analysis for both the mission and the -ritical

issues of the system;
"• specifying safety constraints and a safety strategy for the system to eliminate

hazads
* developing the control system in the data flow computational model;
• applying the transformation to the data flow specification of the system (both

the control system and the plant) obtaining a LOTOS specification which
maintains all the relevant properties (and doing some expression
transformation if necessary for their automatic analysis);

* verifying the correct behaviour of the system composed by the plant and the
controller through an automatic analysis of the LOTOS resulting expression
using the available tools.

3 The Train Set Example

The train set example consists of a simple control system for the contact-free
moving of trains on a circular track [1], [11]. Suppose to have one directional
moving of two trains on a circular track divided in six sections, with the constraint
that trains are less than one section in length. Hazardous states are the states in
which a train may be involved in a collision. In our system, a state is hazardous if
the front of one train is in the same or adjacent section as the front of another train.
They are avoided in a system if the following condition (safety condition) always
holds: the heads of the trains differ at least by 2 sections. The concept of reserved
section is introduced and our safety strategy is based on: 1) a section can be reserved
by only one train; 2) for any train the section of the front of the train and the section
behind must be reserved; 3) a train must always reserve a section before entering it.
We use 0 and ( to represent the operation of subtraction modulo 6 and the
operation of addition modulo 6, respectively.

We divide the system under development into the physical plant and the controller
which communicate by sending control signals and then we apply the data flow
model based on the Jonsson's formalism [7]. The plant is composed by six sections
(Secto, ..., Sect5) shown in Figure 1 (a). In each section a sensor detects a train
entering in the section and an actuator has the task to stop a train before leaving the
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section when necessary. We model the flow of the train by messages scant by one
section to the next (channel sni). On receipt of this message the section sends a
signal to the conuoler to notify the passage of a train (channel esi). Then before the
train is allowed to move on the section, it waits for a message from the controller
with the meaning that the train is allowed to leave the section (channel goi). On
receipt of this message, the section sends a message to the next section in the
circular track to simulate the movement of the train (channel sni. 1).

Plant Controller

00 $0 CI0I0 akB

0I 10 CNTIOk RES2
0 0

9001

.as 
.

3

M S04].o CN4 RSo
5

05d as55

(a) (b)
Figure 1: The Data Flow Network of the Train Set System.

The controller interacts with the plant and is composed by the data flow nodes
repor ed in Figure 1 (b): six CNTi nodes and six RESi nodes. Each CNTi realises
the communication with the section Secti of the plant while each RESi implements
the correct reservation mechanism of the corresponding section Secti. The CNTi
node, after having received a signal from section Secti that a train has arrived
(channel esij, sends a signal to RESio2 to mark section Sectie2 as free (channel
Vie2), and then it tries to book the section (iAl) for the train sending a signal to
RESiql (channel Piql). CNTi waits for a positive answer from RESiqI (the next
section has been reserved) (channel okiql); and then it sends a signal to Secti for
allowing the train to leave section Secti (channel goi). Each RESi node controls the
status of the corresponding section which can be reserved for one train or free. It
receives signals from the CNTie1 (channel Pi) and reserves the section by sending
an acknowledgement (channel oki). After the section has been reserved it accepts
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only a signal through the channel Vi to free the section before accepting (and
making) any further reservation.
The resulting data flow network N, composed by the controller and the plant, is
shown in Figure 1. Let A and B be natural numbers representing the identifiers for
the trains running over the track, we suppose an initial state with train A in section
Sectl and train B in section SectS; it follows that the sections I and 0 (for train A)
and the sections 5 and 4 (for train B) must be reserved. The initialisation is used to
define the initial state of the data flow nodes. For those communications which are
signals we associate the dummy value 1 in defining of the firings of the nodes
(another way is to allow any data value). The definition of the data flow nodes is:

Section node Secti
ISeci=(sni, goi) Osecti= (esi, sn(il)) SSecti=(s. Sa, Sb)

Rsecti=(Fl, F2, F3, F4) FAIRsecti=Rsecti

Fli<s, [sni->A], sa, [esi->l]> F3=<Sa, [goi->l], S, [sn(il)->A]>
F2,.--<s, [sni->B], Sb, [esi->l> F4--<sb, [goi-A], s, [sn(i~l)->B]>

sOsectl-S,, s0 Sect5=Sb and s0Secti--s for i=(0,2,3,4).

Controller node CNTi
IkNri--'esi, ok(iwl)} OcNTi={goi, P(iml), V(i@2)} SCNTi=[s, s-)

RCNTi=[F5, F6) FAINTi=RCNTi

F5=<s, [esi->l], s', [V(i@2)->l, P(il)->l]> F6=<s', [ok(il)->l], s, [goi->1]>

s0CNTi=S, for i=( 1,5) and S0CNTi=S for i=(0,2,3,4).

Controller node RESt
IRESIPi--PiVi} ORESi= {oki} SRESi--{s, S-)

RRESi-= (F7, F8) FAIRREsi=RRESi

F7=<s, [Pi -> 1], s', [oki -> I]> F8='<s', [Vi -> 1], s, [>
sORESi=s' for i--(0, 1, 4, 5) and S0RESi=s for i=(2,3).

To apply the transformation we specify the maximum size of the channels which
may be assumed equal to two, while the signal communications can be transformed
in pure synchronisation action in LOTOS. We give here the LOTOS process
definition for the single data flow nodes obtained applying the transformation
described in Section 2. The process definitions for the Sect, CNT and RES nodes
and that for the CP which simulates a FIFO buffer of length two are:

Mg= nodeSect[sn, es, go, nextsn](actsate: state) : noexit:-
([actstate=s] -> (sn?X:nat [X=A]; i; es! 1; nodeSect[sn, es, go, nextsn](sa)

0 sn?X:nat [X=B]; i; es! 1; nodeSect[sn, es, go, nextsn](sb))
0 [actstatesa] -> go?X:nat; i; nextsn!A; nodeSect[sn, es, go, nextsn](s)
O [actstate=sb] -> go?X:nat; i; nextsn!B; nodeSect[sn, es, go, nextsn](s))

(nodeSect
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nodoCNT[es, P, ok, V, go(actstate:stt) : noexit :-
([actstatems] -> es?X:nat; i; Vii; P!1; nxoedNT[es, P, ok, V. go](s)
0 [actstate-s' -> ok?X:nat; i; gol1; nodCNT[es, P. ok, V. go](s))

-2-- (0 noeCT*)

SnodeRES[PokV](ac sM a :sut e): noexit :=
([acs ]=sJ -> P?X:at i; okl 1; nodeRES[Pok,VJ(s)
oI [ac]stat&W' -> V?X:nat i; nodeRES[P~ok,V](s))

and= (* nodeRES *
Uaa CP[inp, out]: noexit

h&id mid in oneslotfinp, mid] I[mid]l oneslot[mid, out]

p oneslot[a, b] : noexit:= a?X:nat ; b!X; oneslot[a, b]
oft= (* oneslot *)

md (* CP*)

Since LOTOS specifications belonging to the subset of LOTOS without data (basic
LOTOS) can be completely analysed by the verification tools, while for
specifications with data values we can only simulate and/or compile and run them,
we will restrict ourselves to basic LOTOS whenever possible without loosing
properties. The LOTOS behaviour analyser AUTO [15], allows us to build the
automaton of a basic LOTOS specification to prove strong and weak bisimulation
between specifications. Although it fails when running on large specifications,
simple ones like ours can be successfully run and the LOGIC CHECKER tool [161
can be used to prove action-based logic formulas ACTL, over the specification. To
this purpose we make some manipulations of the specification obtained directly by
the data flow to LOTOS transformation, trying to synchronise processes and to hide
actions as soon as possible. This allows AUTO to reduce the number of the states
during the generation of the automaton of the specification. The LOTOS
"Regrouping Parallel Processes" correctness preserving transformation can be
applied automatically by the LOTOS structure editor to regroup processes
differently. The transformation preserves the strong bisimulation equivalence. All ,,
the previous tools are included in the LOTOS integrated tool environment Lite [10]
developed inside the LOTOSPHERE ESPRIT project. Since all the nodeSect,
nodeCNT and nodeRES processes execute all the actions in state s and then the
actions in the state s' (nodeSect executes actions either in sa or sb) before repeating,
we assume s as the initial state and rewrite the processes as:

Ma nodeSect[sn, es, go, nextsn]: noexit :=
(sn?X:nat [X=A]; i; es!l; go?X:nat; i; nextsn!A; nodeSect[sn, es, go, nextsn]
a sn?X:nat [X=B]; i; es! 1; go?X:nat; i; nextsntB; nodeSect[sn, es, go, nextsn])

uidmi (* nodeSect *)
a. nodeCNT[es, P, ok, V, go]: noexit :=

zs?X:amt; i; V!I; 1I1; ok?X:nat; i; go!l; nodeCNT[es, P, ok, V, go]
cdft (* nodeCNT
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n nodeRES[P,okV): noexit :f
P?X.nat i; ok!l; V?X.nat; i; nodeRES[Pok,V]

Md=• (* n *)

To keep into account the initial position of trains, the corresponding processes must
contain a prefix behaviour expression representing the action to be performed at
systmn start. This lead to the definition of the following processes: nodeSectA and
nodeSectB for the sections where train A and train B are at the beginning,
respectively; nodeICNT for the controllers that have to reserve the next section for
allowing the trains to move (1 and 5 in our case) and nodeIRES for the sections that
are reserved at the beginning (0, 1, 4 and 5 in our case). We have:

c nodeSectA[sn, es, go, es, nextsn]: noexit :=
go?X:nat; i; nextsn!A; nodeSect[sn, es, go, nextsn]

oft= (* nodeSectA *)
mm nodeSectB[sn, es, go, es, nextsn]: noexit

go?X:nat; i; nextsn!B; nodeSect[sn, es, go, nextsn]
md= (* nodeSectB *)

m nodelCNT[es, P, ok, V, go]: noexit :=
PU1; ok?X:nat; i; gol1; nodeCNT[es, P, ok, V, go]

ad= (* nodelCNT *)
zmm nodelRES[P,ok,V]: noexit:=

V?X:nat; i; nodeRES[Pok,V]
mWWM (0 nodem*ES

We can now map our specification into basic LOTOS. Lite, provides many
mappings from a full LOTOS specification onto a basic LOTOS one. They differ
for the data value information that are removed. We can apply the simplest
transformation named "transnp0" where all data are dropped, keeping simply the
original gate identifiers as basic LOTOS actions. The transformation can be directly
invoked by the behaviour analysis menu entry. In order to apply this mapping
without loosing information, we modify the specification defining one gate for train
A and another one for train B when they run over the track (i.e. substituting each
action sni with two actions asni and bsni). The new process nodeSect is simply a
non deterministic choice between the actions corresponding to the passage of the
two trains. This is the only communication channel where data are important, in all
the others the value of the data are not significant and can be dropped. The basic
LOTOS specification of the section is:

Wga nodeSect [an, bsn, es, go, nextasn, nextbsn] :noexit:=
(an; i; es; go; i; nextasn; nodeSect (asn, bsn, es, go, nextasn, nextbsn]
' bsn; i; es; go; i; nextbsn; nodeSect [an, bsn, es, go, nextasn, nextbsn])
- -(* *de



The behaviour expression of the whole specification of the system is reported in the

Appendix; where the observable actions are the actions corresponding to the
movement of the trains over the track (gates asni# and bsni#). Note that there are
not external channels of the network and the set of processes associated to the nodes
must synchronise with the set of channel processes on the whole set of gates. The
LOTOS behavioural analyser AUTO can be run over the specification allowing to
easily prove our safety strategy. The automaton (considering the weak bisimulation
equivalence) has 18 states and 24 transitions and it is deadlock free. We proved
automatically, by using the LOGIC CHECKER over the automaton, the following
logic formulas to be true for train A:
1) train A can enter any section: A[true(true)U(asni#)}nae];
2) train A can only move from section i to section il:
AG([asni#]A[tre(cond)U(-asn(i1l)#)true]);

where cond=((-as#)&(-asl#)&(-wn2#)&(-3#)&(-asn4#)&(-a5#));
3) for each path such that train A enters section i, train B cannot enter section (iOI)
until train A enters section (iMl):
AG([asni#]A[rue(-bsn(iOl)#)U(bsn(il)#)A[rue(-bsn(igl)#)U(asn(i@l)#)true]]).
The same formulas can be proved to be true for the train B.
From these we have that when train A is in section i, train B is never in section
iel, i, i~l. This holds also for train B, thus satisfying the safety condition.

4 Conclusions

In this paper we have presented a methodology which can be used for the design of
safety-critical systems and for the validation of the design. Quite apart the modelling
of the physical environment as a part of the overall system which can be used as test
case for the control system, the use of the data flow computational model for the
description of the system specification allows the designer to use notations which
are very natural and which can be made even more user friendly by the use of
development tools like a graphical editor [4]. The transformation into process
algebras specification allows the use of the analysis tools available in LOTOS,
making the entire process from specification to verification and validation fully
automated.
The proposed approach has been applied to a simple control system where advantage
could be taken by the use of the basic LOTOS tools like the behavioural analyser
AUTO for the generation of the automaton and the LOGIC CHECKER. The
extension of the proposed approach to the validation of control systems LOTOS
specifications with data value involves the use of the simulator tool [10] and the
compiler available in the full LOTOS environment, which allows to derive the
possible traces of execution of the original data flow network. This extension is
anyway limited by the fact that tracing the behaviour of a general network may be
very lengthy and unfeasible in case of infinite input sequences. Nevertheless for
control systems where the possible input sequences are constrained either on data
value or on periodicity, the proposed approach can be used for problems of larger
size than that presented in this paper.
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Appendix
Unification SYSTEM [asn0#, asnl#, asn2#, asn3#, asn4#, asn5#,

bsn0#, bsnl#, bsn2#, bsn3#, bsn4#, bsn5#] noexit

asnO, asni, asn2, asn3, asn4, asn5, bsn0, bsnl, bsn2, bsn3, bsn4, bsn5, esO, esi,
es2, es3, es4, es5, es0#, esl#, es2#, es3#, es4#, es5#, goO, gol, go2, go3, go4,
go5, goO#, gol#, go2#, go3#, go4#, go5#, P0, P1, P2, P3, P4, P5, PO#, PiN,
P2#, P3#, P4#. P5#, okO, oki, ok2, o60, ok4, ok5, okO#, okl#, ok2#, ok3#,
ok4#, ok5#,VO, V1, V2, V3, V4, V5, VON, ViJ#, V2#, V3# V4#, V5#
in
(nodeSect[asnO#,bsn0,esO,goO#,as 1,bsnl 11II nodeCNT[esONPO,okO#,VO,goO] HII
nodeSectAllasnlN~bsl#,esl,goi#,asn2,bsn2) 1l1 nodeICNT~esl#,PIokl#,Vl~gol) HII
nodeSect~asn2#,bsn2#,es2,go2#,as3,bsn3] III nodeCNT[es2#,P2,ok2#,V2,go2] III
nodeScct[asn3#,bsn3#,es3,go3#,as4,bsn4] III nodeCNT[es3#,P3,ok3#,V3,go3] III
nodeSect[asn4#,bsni4#,es4,go4#,as5,bsn5] III nodeCNT[es4#,P4,ok4#,V4,go4] III
nodeSectB~asn5#,bsn5#,es4,goO#,asnl1,bsnl 111I nodeICNT[es5#,P5,ok5#,V5,go5] III
nodeIRES[PONokO,VO#] III nodeIRE[P1#,okl,V1#] III nodeRES[P2#,ok2,V2#] III
nodeRES[P3,ok3,V3#] III nodelRES[P4#,ok4,V4#] III nodeWIRES[P5#,ok5,V5#])
11 (* full synchronisation *
(CP[asn0,asn0#] III CP[asnl~asnl#] III CPI~asn2,asn2#] III CPI~asn3,asn3#] III
CP~asn4,asn4#J III CP[asn5,asn5#] III CP[bsnO,bsnO#J III CP[bsnl,bsnl#] III
CP[bsn2,bsn2#] III CPtbsn3,bsn3#I III CP~bsn4,bsn4#] III CP[bsn5,bsn5#] III
CP~es0,esON] III CP[esl~esl#] III CP[es2,es2#] III CP[es3,es3#] III CP[es4,es4#] III
CP~es5,es5#] III CP[go0,goON] III CP[gol,gol#] III CPI~go2,go2#] III CP[go3,go3#]
III CP[go4,go4#] III CP~go5,go5#] III CP[POIPON III CP[PIP1#] III CP[P2,P2#] III
CP[P3,P3] III CP[P4,P4#] III CP[P5,P5#] III CP[ok0,okONJ III CP~okl,okl#] III
CP[ok2,ok2#] III CP[ok3,ok3#] III CP[ok4,ok4#] III CP[ok5,ok5#] III CP[VO,VON] III
CP[VI,V I#] III CP[V2,V2#1 III CP[V3,V3#1 III CP[V4,V4N] III CP(V5,V5#3)

<process definitions>
ad=~ (* SYSTEM)
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Abstract. In verifying a safety-critical system, one usually begins by
building a model of the basic system and of its safety mechanisms. If the
basic system model does not reflect reality, the verification results are
misleading. We show how a model of a system can be compared with the
system's fault trees to help validate the failure behaviour of the model.
To do this, the meaning of fault trees are formalised in temporal logic
and a consistency relation between models and fault trees is defined. An
important practical feature of the technique is that it allows models and
fault trees to be compared even if some events in the fault tree are not
found in the system model.

1 Introduction

Safety-critical systems often have mechanisms designed to prevent, detect, or
tolerate system system faults. To ensure that these mechanisms work as intended,
a model of the system can be built from two parts: a model of the basic system
and a model of the safety mechanisms (see Figure 1). Important properties of
the system are then verified of the model. For example, if a component failure
occurs, then it is detected.

e Baic sstemSafetymodel 
Me

Fig. 1. A Model of a Safety-Critical System

For the verification results to be valid, the basic part of the model should
reflect the true connection between component failures and system faults in
the system. We are aware of a study of a rail interlocking system in which the
preliminary system model allowed only one train per track section, thus making
collisions impossible. Less obvious problems may be harder to discover, such as
when a particular combination of failures leads to a system fault in the real
system but not the system model.
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We propose a validation technique in which a system model is compared to
its fault trees. If a system model and its fault trees are not consistent in a sense
that we will define, then the system model may not be valid. Fault trees are
well suited for this purpose because they are specifically intended to capture the
relationship between component failure and system faults.

The two main sections of the paper cover the precise meaning of fault trees
and our proposed relationship between fault trees and system models. First,
however, we present an example.

2 Example

To make discussion of the problem more concrete, we present a simple boiler
system example (see Figure 2).

Bodap

water wawr

Conto.

Symmapump nputPump

Si-d

SCOW I,' Sm

Fig. 2. A Simple Boiler System

Steam is produced by water contained in the boiler vessel. The water level in
the vessel is read by two sensors, which pass their readings to a control system.
If the readings are below a certain value, the pump is turned on, delivering water
to the vessel. If the level readings are above a certain value, the pump is turned
off.

One safety-critical fault of the system is a boiler level that is too high. A
fault tree for this fault is given in Figure 2.

A fault tree represents how events in a system can lead to a particular system
fault. The event symbols used here are either basic events (which are drawn
as circles and represent component failures) or intermediate events (which are
drawn as rectangles and represent events which occur because of lower-levelto th . .. ... .. If the lee edng rbvacranv lue the pum is turne
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Feig. 3. A Fault Tree for the Boiler System ,

events). The system fault ii shown as the event at the root of the tree. Event
symbols are connected in the tree by gate symbols, which are either and-gates
or .s-gates.

The full fault tree notation has many more event and gate symbols, but if
we do not consider the probabilistic meaning of fault trees then the symbols we

have described are enough.
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3 Fault Tree Semantics

If we are to compare fault trees and system models, we need to understand
precisely what a fault tree means. Unfortunately, even the most definitive sources
(e.g., the Fault Tree Handbook [5]) are vague on some critical points.

One issue is the nature of events. Are they to be regarded as conditions
having duration or as instantaneous occurrences? The example event "contacts
fail to open" from the Fault Tree Handbook suggests the former, but the example
"timer reset" suggests the latter.

The second issue is the gate condition: does "and" mean that both input
events happen at once, or only that one happens and then the other?

A third issue is the nature of causality. A gate models a sufficient cause if
the output must occur if the gate condition is satisfied by the inputs. A gate
models a necessary cause if the gate condition must be satisfied by the inputs
if the output occurs. According to the Fault Tree Handbook, fault trees model
sufficient and necessary causes. However, Figure IX-10 of the Handbook shows
an event labelled "wire faults in K3 relay & comp. circuitry" as a cause of "K3
relay contacts fail to close", but one can imagine circumstances in which wire
faults occur in such a way that the relay contacts do not fail to close. Therefore
the cause as stated is not a sufficient one.

Causes of an event are also supposed to be immediate. This term seems
related to the notion of flow, and may not be relevant in systems that cannot be
captured easily with flow models. All examples in the Fault Tree Handbook are
illustrated with flow diagrams. Immediacy ako suggests time. For our purposes,
a gate models an immediate cause if no time passes between a cause and its
effect.

We now present a formal semantics for fault trees. Events are treated as
conditions having duration, and the gate condition is taken to be that both
inputs to an and-gate must occur at once. Three different formalisations of gates
are given, corresponding to different stances on the issue of gate causality.

Formally, fault trees are interpreted as formulas of temporal logic. We use
the modal mu-calculus (see Appendix A), but nearly all temporal logics are ex-
pressive enough for our purposes. Similarly, the kinds of structures that temporal
logics are interpreted over are very general. We assume only that a system model
can be represented as a transition system or as a set of sequences of states.

Events are formalised as atomic propositions, which are interpreted as sets of
states. For example, the event "sensor failure" could be modelled as the atomic
proposition SF, which is interpreted as all states in which the sensor has failed.
This formalisation of events fits with most of the examples of the Fault Tree
Handbook, and is consistent with the meaning of the term "event" in probability
theory. Since fault tree are subject to probabilistic analysis, a consistent view of
events is desireable.

Next we will formalise the meaning of gates. We will let +(inr, in2, out) stand
for an or-gate with inputs in1 and in2 and output out. Similarly, *(in,, in2, out)
stands for an and-gate. The semantics of a gate g, denoted [g], gives the logical
relationship between the input and output events of g.
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3.1 A Propositional Semantics for Gates

Formalising gates with propositional logic is a simple approach that is reasonably
close to the informal description of gates in the Fault Tree Handbook. In terms
of the issues just discussed, this interpretation requires and-gate inputs to occur
at the same time for the gate condition to be satisfied, and takes causality to be
necessary, sufficient, and immediate. The subscript p on the semantic function
stands for "propositional".

[+(inl,in2, out)]p d=f out 4* in, V in2

[*(inl,in2, out)Ip Lei out 4* in, A in2

Informally, the first statement says that the output of an and-gate is true
whenever both inputs are true. Remembering that events are treated as sets of
states, the statement alternatively says that the set of states denoted by out is
the intersection of the sets denoted by in, and in 2. The concept of causality here I
is truly immediate: whenever both causes are present the effect is also present.

3.2 Two Temporal Semantics for Gates

The greatest weakness of the propositional interpretation of fault trees is the
assumption that no time can pass between cause and effect. This assumption
violates a common intuition about causality. Since the examples in the Fault Tree
Handbook mostly concern examples in which flow is virtually instantaneous (as
in an electric circuit), the problem rarely arises there. In cases where flow is not
instantaneous, events are modelled so that causes can be made immediate, albeit
somewhat unnaturally. For example, in the pressure tank analysis of Chapter VII
continuous pump operation can lead to a pump failure. This cause is modelled
as the event "tank ruptures due to internal over-pressure caused by continuous
pump operation for t > 60 sec". Since the idea of a cause leading to an event is
natural, it is worthwhile to try to view fault trees in this way.

Our first temporal semantics requires that and-gate inputs occur at the same
time to satisfy the gate condition, and takes causality to be only sufficient, not
necessary or immediate. This means that once the gate condition is satisfied, the
gate output must eventually occur. The temporal logic operator even is used
to express the temporal condition of eventuality. Thus even(o) means that the
property expressed by formula 4 will hold in the future.

The temporal relation between input and output events for gates can be
defined as

[+(in1,in2,out)jl, 4Y (in, V in22. o even(out)

[.(in,,in2,out)j l= (in1 A in2) =, even(out)

The first definition says that it is always the case that if input events in, and
in2 occur together, then eventually output event out will occur.
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Our second temporal semantics treats causality as only necessary. The tem-
poral operator prev(qS) means that the property expressed by formula 0 held in
the past.

[+(in,, in2,Out)] 2 =e_ out =• prev(in1 V in2 )

[*(ini,in2,out)1 2 40-f out = prev(in1 A in 2 )

However, these definitions allows the gate output out to occur many times
for a single occurrence of in, A in 2. A better interpretation might require that
if out happens, then in1 A in2 must have happened at least as recently as the
previous occurrence of out.

There are other possible interpretations based on other choices about the
basic semantic issues. For example, combining the two temporal semantics we
have presented would give one modelling sufficient and necessary causality.

Fault tree gates have been interpreted temporally before (see [1]), but the
use of temporal logic here allows much simpler semantics. This simplicity makes
comparison between alternative interpretations easier.

3.3 Putting Gates Together

We now present the semantics of a fault tree t based on the set of gates contained .7
in the tree (written as gates(t)) . We use the temporal operator always(O), which
means that the property expressed by 0 holds in every state.

it] always( A [g&
gEgates(t)

In English, this definition says that it is always the case that every gate
condition is satisfied. Note that the meaning of a fault tree is given in terms of
the meaning of its gates.

The propositional semantics has some great advantages over the temporal
ones. Because a gate output is defined in the propositional case to be logically
equivalent to the disjunction or conjunction of its inputs, the fault tree can be
manipulated according to the laws of propositional logic. This property allows
internal events of a fault tree to be removed by simplification, giving a relation
between only the primary failures and the system fault (as is found in minimal
cut set interpretations of fault trees [5]).

A further advantage of the propositional interpretation of fault trees is that
the meaning is given as an invariant property - a property that can be checked by
looking at states in isolation. Invariant properties are an easy class of temporal
logic formulas to prove.

The main advantage of the temporal semantics is their ability to model richer
notions of causality. Unfortunately, it is no longer possible to eliminate internal
events by simplification, and thus minimal cut sets cannot generally be obtained.
Furthermore, this formalisation of fault trees uses the temporal property of even-
tuality, and is therefore a liveness property. This class of temporal logic formulas
are generally more difficult to prove than invariant formulas.
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The best interpretation of a fault tree probably depends on the system being
studied. In some cases one might want to choose different interpretations for
different kinds of gates. For example, or-gates could be interpreted proposition-
ally and and-gates interpreted temporally. Alternatively, a wider variety of gate
types could be defined, and their use mixed in a single fault tree.

The material in the next section can be applied independently of choice of
semantics for fault trees.

4 Relating Fault Trees to System Models

The last section showed that a fault tree expresses a property of failure events in
a system. We might therefore expect a model of the system to have the properties
expressed by its fault trees. We will attempt to make this relationship precise.

Let F stand for the set of system faults for which fault trees have been
developed, and let f t(F) be the fault trees for fault F. Given a system model M
with an initial state so, we write so ý,•,0 if the system model has the property
expressed by formula 0. The condition expressing that a model M of a system
is consistent with the set of fault trees for the system is

so 8m A [ft(F)I
PE"

This condition is too strong, however, because usually a system model will
capture only certain aspects of a system. One way to weaken the relation above
is to require a system model to satisfy the property expressed by a fault tree only
if the system fault of the tree is found in the system model. Letting faults(M)
stand for the system faults in a model M, the new consistency condition is

so k0 A if t(F)]
FE nflaulta(m)

This relation is still quite strong, however. If a system model only captures
certain failures, then it probably would not satisfy this condition. It would be
useful to know the weakest relation that should definately be expected to hold
between a model of a system and the fault trees of a system. Our approach is
to asbume that we know nothing about events not given in a system model. As
an example, suppose that we have a single or-gate, +(B, C, A), which by the
propositional interpretation gives the relation A 4* B V C between events A, B,
and C. Also suppose that we know nothing about event B. Then we will still
expect that C =: A. Logically this amounts to the projection of the relation
A * B V C onto the atomic propositions A and C. The projected relation is
arrived at by taking the disjunction of the cases where B is true and B is false.
In other words, the disjunction of A c* true V C and A 4* false V C is equivalent
to the formula C =* A. In the general case, where more than one event might
be missing, we need to consider all combinations of possibilities for the missing
events.
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To formalise this idea, let 0[0'/Q] be the formula 0 with every occurrence of
atomic proposition Q within 0 replaced by 4'. For example, AVB[false/B] gives
A V false. For multiple substitutions, let 0[01/Qi,... , 4,I/Q,] be the formula
4 with occurrences of Q.,..., Q, in 4 simultaneously replaced by 41i,... 1,
(no atomic proposition is allowed to occur twice in the substitution list). For
example, A V B 4* C[true/A, false/C] gives true V B €* false. We will write

S1 x S2 for the cross product of sets S1 and S2, i.e., S x S2 =__d {(z,y) Iz E
S1 and y E 52).

Let Boot be the set {true, false) of boolean constants, and let Boolt be the
n-fold product of Bool. The interpretation of a fault tree in the absence of a set
of events C = (a,,... ,a,) is defined to be:

it -e d__= V [tl[bl/ai,...,bn/an]
(b ,...,b,}EBool"

Let events(M) be the set of events in the system model M, and let events(t)
be the set of events in fault tree t. Then events(t)\events(M) is the set of events
found in the fault tree t but not the model M. The condition expressing that a
model M of a system is consistent with the set of fault trees for the system is
now

so A [f t(F) - (events(ft(F)) \ events(M))]
FEn~fjaulta(m)

5 Conclusions

This paper contains three contributions to the study of safety-critical systems.
First, it presents the idea that fault trees can be used to check the validity
of safety-critical system models. Second, it contains three formal semantics for
fault trees. These semantics are an improvement on earlier work by expressing
the meaning of fault trees with temporal logic, by expressing events as sets of
states, and by identifying four elements of the meaning of gates: gate condition,
sufficiency, necessity, and immediacy. Finally, the paper defines a consistency
condition between a model of a system and the system's fault trees that works
even for models that contain only some of the failure events in the their fault
trees.

Tool support for checking the consistency condition exists in the form of
model checkers, which automatically show whether a finite-state model satisfies
a temporal logic formula [3]. Proof tools (such as [2]) are available in case the
model is not finite-state.

The work described here should be regarded as a first step towards a complete
understanding of fault trees and their relation to system models. As mentioned
in the section on the semantics of gates, the formalisation here of necessary
causes may be too simplistic. The consistency condition given might need to
be strengthened to ensure that an event representing a component failure can
always occur provided it has not already occurred. Our consistency condition
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handle the case in which a single failure event in a system model represents
several failure events in a fault tree.

A A Temporal Logic

We use an extended form of the modal mu-calculus [4, 6] as a temporal logic
to express behavioural properties. The syntax of the extended mu-calculus is as
follows, where L ranges over sets of actions, Q ranges over atomic sentences, and
Z ranges over variables:

0::= Q I -4 101 A 02 1 [L]O I Z I JZ.0

The operator 'Z binds free occurrences of Z in 4), with the syntactic re-
striction that free occurrences of Z in a formula 4) lie within an even number of
negations.

Let S be a set of states and Act a set of actions. A formula 0 is interpreted
as the set 11,011r of states, defined relative to a a fixed transition system T -
(S, {- a E Act)) and a valuation V, which maps variables to sets of states.
The notation V[S'/Z] stands for the valuation V which agrees with V except
that V*(Z) = •'. Since the transition system is fixed we usually drop the state
set and write simply I[4[[v. The definition of II01Iv is as follows:

IIQIlh = V(Q)
Ih-011V = S - 111llv

1101 A 0211v = II011v n 110211v
II[L])llV = {s E S I ifs -- s' and a E L then 8' E 11•)10)

IIZ1kV = V(Z
IIVZ.4llv = U{s' C S I si' II)llvts[,/Zl}

A state s satisfies a formula relative to a model M = (T, V), written s =M4,
if s E I110 . '11

Informally, [L]4) holds of a state s if 4) holds for all states s' that can be reached
from s through an action a in L. A fixed point formula can be understood by
keeping in mind that YZ.4) can be replaced by its "unfolding": the formula 0 with
Z replaced by vZ.0 itself. Thus, vZ.10 A [{a}]Z = 0' A [{a}](vgZ4 A [{a}]Z) =
1^ A [{a}]( A [f {a}](vZ.P A [{a}]Z)) = ... holds of any process for which 1& holds
along any execution path of a actions.

The operators V, (a), and pZ are defined as duals to existing operators (where
O[Ik/Z] is the property obtained by substituting io for free occurrences of Z in
4):

0)1 V 02 Le= 1-1 12

def(L)O4)'e = []-

sZ.42 = -w'Z.-,O[-'Z/ZJ

L , .. . ..
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These additional basic abbreviations are also convenient:
[ a, ,-*]• ff[{i,... ,-.

[_]o d--= [Act]Odd

true =- vZ.Z

false -- -ntrue

Common operators of temporal logic can also be defined as abbreviations:

alWS(O) = 4 Z.0 A [-]Z

even(o) ITF Iz.0 V ((-)true A [-]Z)

To define a previously operator, a reverse modal operator [LI must be added
to the logic.

II[lIlv = {I E S I if s' a s and a E L then 8' E 110110}
The previously operator is just the reverse version of even:

prev(0) = pZ.0 V (-treA ̂ Z)
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Abstract. In this paper we illustrate, by way of examples, composition,
analysis and refinement of systems modelled by means of probabilistic
automata behaving as Markov chains over discrete time. For a formalised
and general treatment of these ideas the reader is referred to [6].

1 Introduction

Dependability analysis of failure-prone real-time systems or performance anal-
ysis of real-time systems interacting with stochastic environments is frequently
based on the use of Probabilistic Automata, PA's, with Markov properties as
computation models.

A recent formalism using this approach is Probabilistic Duration Calculus
PDC [5], an extension of Duration Calculus, DC, which in turn was developed
for specification and verification of embedded real-time systems [7, 1].

For a given discrete-time PA representing a design PDC makes it possible to
calculate and reason about the probability that the PA satisfies a DC-formula
(expressing a requirement or design decision) during the first t time units.

In this paper we consider parallel composition of component PA's into larger
component PA's or into a system PA. Each component PA may depend on states
in the other components, (the PA is then said to be open), but the system PA
is independent of external states (the PA is then said to be closed). Closedness
is a condition for analysis by means of PDC.

We also consider probabilistic refinement with respect to a DC formula. This
means that with two consecutive system designs, if for all t > 0 the second design
satisfies the requirement with higher probability than the first design, then the
second design is said to refine the first design with respect to the requirement.
Simple examples of probabilistic refinement are included.

Compositionality has also been treated in probabilistic extensions of CSP-
and CCS-like process algebras [4, 2], but none of these approaches cover the

• This research was supported by the Danish Technical Research Council under project

Co-design. The research of Zhimning Liu was also supported in part by research grant
GR/H39499 from the Science and Engineering Research Council of UK.



32

dependencies between components referred to above. A notion of probabilistic
refinement different from ours is described in [3]. In this work probabilistic
specifications prescribe permissible intervals for the target probabilities, and
refinement refers to the narrowing of these intervals in subsequent specifications.

2 Probabilistic Automata Over Discrete Time

The behaviour of probabilistic systems having a finite number of states is con-
veniently modelled by means of finite probabilistic automata over discrete time.
These automata are defined by the set of states, the set of initial state proba-
bilities and the set of transition probabilities per time unit.

As a running example we consider a Gas Burner consisting of a Burner (an
abstraction of the gas-valve, the ignition device and the control box) and a
Detector (an abstraction of the mechanism for detection of unburnt gas). We
assume that the gas is turned on at t = 0 and remains on.

2.1 States

The Burner and Detector components are characterised by disjoint sets of prim- '
itive Boolean states. For simplicity these sets, denoted AB and AD respectively,
are assumed to be the singleton sets

AB = {Flame} and AD = {Act}

where Flame asserts that the flame exists and Act asserts that the Detector is
able to detect unburnt gas. (If the gas was not permanently on, we would have
to define AR as {Gas, Flame} where the additional primitive state Gas asserts,
that gas is released.)

The set of component states SB and SD are defined as subsets of the set of
minterms over AB and AD respectively.

SB = {-,Flame, Flame} Cg 2A0 and SD = {-'Act, Act} C 2AD

(where, in this case, all minterms are possible states). Accordingly the Burner
makes transitions between the states -,Flame and Flame (corresponding to
alternation between successful flame ignitions and unintended flame extinctions)
while the Detector makes transitions between Act and -,Act (corresponding to
alternation between failure and repair).

For the composed system we have:

A = AB U AD = {Flame, Act}
S =SB XSD =

{-,Flame A Act, Flame A Act, ,Flame A -,Act, Flame A -Act} C_ 2 A

Lj.... .w~mmmmd~wmlm~m-~ a•l
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2.2 Dependency of External States

In a composite system a component can only change its own primitive states.
However, the local transition probabilities may depend on external states, i.e.
states which are local to other components in the composition.

This is exemplified by the Burner. For example, given that the Burner is in
state -"Flame at time t, the probability that it will be in state Flame at time
t + 1 is zero if the Detector is non-active and non-zero if it is active. In the latter
case the actual value depends on the quality of the ignition mechanism in the
Burner.

2.3 Open and Closed Probabilistic Automata

The previous discussion suggests that a component, which depends upon envi-
ronmental states, should be modelled by a collection of sub-models, one for each
environmental state. This is illustrated by the transition graphs for the Burner
automaton in Figure la according to which:

- The Burner starts from state -,Flame with probability pi = 1.

- With the Detector in state Act the Burner behaves as follows

"* Given that it is in state -,Flame, it remains in that state with prob-
ability plu per time unit or it goes to state Flame with probability
P12 per time unit where P11 + P12 = 1.

"* Given that it is in state Flame, it remains in that state with proba-
bility P22 per time unit or it goes to state -,Flame with probability
p21 per time unit where P22 + P21 - 1.

- With the Detector in state -'Act the Burner behaves as follows

"• Given that it is in state -,Flame, it remains in that state with proba-
bility pi I = 1 per time unit. This implies that P12 = 0, i.e. the Burner
can never go to state Flame.

"* Given that it is in state Flame, it remains in that state with proba-
bility p22 per time unit or it goes to state -,Flame with probability
P21 per time unit where P22 and p21 are the same as when the detector
is in state Act.

Plh and P12 depend on the detector state because they characterise the ability
of the Burner to establish Flame. In contrast to this p22 and P21 are entirely
independent of the detector state because they characterise the stability of the
flame.

A PA in which some transition probabilities depend on external states will
be called an open PA.

For the Detector automaton we assume the transition graph shown in Figure
lb according to which:
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- The Detector starts from state Act with probability qi or from state -,Act
with probability q2 (- 1 - qi).

- Given that it is in state Act, it remains in that state with probability qjI
per time unit or it goes to state -,Act with probability q12 per time unit
where q11 + q12 = 1.

- Given that it is in state -,Act, it remains in that state with probability
q22 per time unit or it goes to state Act with probability q2I per time unit
where q22 + q21 = 1.

The transition probabilities of the Detector are independent of the Burner state.
This reflects that the probabilities of failure or repair of the Detector are con-
sidered to be unaffected by flame- or ignition failures occurring in the Burner.

A PA in which no transition probabilities depend on external states will be
called a closed PA.

Cond. Adt Cond. -,Act

P22 P;22

Flame Flame

P12 P21 P21 Ad A

b: Detector (Closed automaton)
PH1 1

a: Burner (Open automaton)

Fig. 1. The probabilistic component automata: Burner and Detector

3 Parallel Composition of PA's
The PA for the Gas Burner is determined by parallel composition of the PA's

for the Burner and the Detector.

Gas-Burner = Burner 11 Detector

This operation is fully formalised and generalised in [6]. The resulting PA for the
Gas Burner is shown in Figure 2, (where the state numbering is arbitrary and
introduced for later use). The reasoning behind this construction is illustrated
informally be means of a few examples.
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The probability that the Gas Burner starts in, say, state 3: --Flame A -,Act
is the product of the probability that the Burner starts in state -,Flame and the
probability that the Detector starts in state -,Act. According to Figure 1 this
product is p, * q2 = 1 * q2 = qý. Similarly we find that the initial probabilities
of states 1, 2 and 4 are qj, 0 and 0 respectively.

The probability that the Gas Burner transits from e.g. state 1: -,Flame A Act
to state 2: FlameAAct within one time unit is the product of the probability that
the Burner transits from -,Flame to Flame, given that the Detector is active,
and the probability that the Detector transits from Act to Act, both within
one time unit. This product is p12 * qn1. On the other hand, the probability
that the Gas Burner transits from state 3 to state 4 is zero because it requires
a transition of the Burner from -,Flame to Flame while the Detector is non-
active, but according to Figure 1 this is impossible.

The other composite transition probabilities can be determined in a similar
way.

qiqj q2 2q I

SState 2: P2q2State 4:

Flame A Act , P22q2I Flame A -,Act

p~lq2l

p12qI2
p12qn1 p21qil P21q22

qlp q12

-,Flame A Ad q -,Flame A -,Act ''"

Fig. 2. The closed automaton GasBurner = Burner 11 Detector

We observe that even though the Burner PA is open, the composition of the
Burner and the Detector PA's is a closed PA. This illustrates, that when we
compose two component PA's the dependencies of one PA on primitive states
in the other will be hidden in the resulting PA3.

3 This resembles the hiding of a communication between two processes in parallel composition.

A
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In [6] the formalisation of such constructions is based on a representation of
a PA as a tuple (S, C, To,•r) where S is the set of states, C is a set of primi-
tive external states which is sufficient for definition of openness, r0 is the initial
probability function and r is the transition probability function, which is param-
eterised by the elements in the condition space 2 C. A PA is closed if no transition
probability depends on the conditions in 2c. C can then be eliminated from the
tuple.

The parallel operator 11 constructs a well formed tuple (Sc, C,, T7oc, Tc) from
two well formed tuples (S., Ca, To., T.) and (Sb, Cb, rob, n) such that

S -= S, x Sb C 2A-UAb and Cc = (Ca \ Ab) U (Cb \ Aa)

where A. and Ab are the sets of primitive states for components a and b.

4 Requirements and Satisfaction Probabilities

The Gas Burner has critical states characterised by release of gas while the flame
is absent. The disjunction of these states is a state called Leak. Since the gas
is permanently on in our example, Leak is identical to -,Flame which is the
disjunction of states 1 and 3 on Figure 2

One of the design decisions could be that whenever Leak occurs, it should
be detected and eliminated within one time unit. In [7] this constraint, called
Des-i, is expressed as the following formula in Duration Calculus:

Des-i: O(rLeak] ==* I < 1)

This formula reads:

o1 "For any subinterval of the observation interval,"
fLeakl ==* "if there is Leak in that subinterval then"
I < 1 "its length should not exceed one time unit".

Duration Calculus, DC, is an interval logic for the interpretation of Boolean
states over time (a logic for timing diagrams). Its distinctive feature is reasoning
about durations of states within any time interval without explicit reference to
absolute time. It is used to specify and verify real-time requirements. The reader
is referred to [7, 1]. for further details.

For a real design with failure-prone components we can not in general expect
a duration formula (expressing some requirement) to hold for all times. The
question is then: does it hold with sufficiently high probability over a specified
observation interval [0, t]. This question is answered as follows.

Let G denote the closed PA modelling the design and D denote the formula.
Then we must compute the probability that G satisfies D in the time interval
[0, t]. This probability is called the satisfaction probability of D by G and is
denoted io(D)[t].
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Satisfaction probabilities are computed or reasoned about by means of Prob-
abilistic Duration Calculus, PDC [5], a recent extension of Duration Calculus'.

The DC formula for Des-1 belongs to a class for which the satisfaction
probability can be expressed explicitly in PDC by means of the initial probability
vector p and the the transition probability matrix P of G, [51. These matrices
are well known from the theory of Markov chains. For the PA of the composite
Gas Burner, Figure 2, they are given by:

( piiqll p12qj p11q12 MAU
p=(q1,O, q2,0) and P= p21qjl p22qjj P2012 P22q12

q21 0 q22 0
P21q21 P22021 P21022 P22022

with row- and column ordering according to the chosen state numbering. It is
easy to see, that for p as well as for each row of P the sum of elements is 1 (this
is a well-formedness condition for probability matrices).

With D denoting a DC formula of the class referred to above, the explicit
expression for /G(D)[t + 1] is a scalar product of the form [5]:

/AG(D)[t + 1] = p'-(pt)t lC

where p' and P' are obtained from p and P, respectively, by replacement of
certain entries (depending on D) by zeros, (P,)t denotes the t'th power of P'
and Ic denotes a column vector in which all elements are 1.

For G representing the composite Gas Burner and with D given as the DC
formula for Des-1 above, p' = p, (i.e. no entries in p needs to be zeroed) and
P' is obtained from from P by changing the entries in P with (row,column)
numbers (1,1), (1,3), (3,1) and (3,3) to zero. Accordingly:

P(G(o(rLeakl =. I < 1))[t + 1] = p'. (p,)t l- =( 0 P12%,1 0 P12q121
(ql 0, q2,0). P2iqi1 P22q11 p2 1q12 P22q12 1'q 1 'q~ ) 0 0 0 0

P21q21 P22q21 P21q22 P22q22

Informally the rules for obtaining the primed matrices from the unprimed
ones (i.e. for the zeroing of entries) are as follows:

If D is violated by behaviours which have state i as the initial state (the
state in the first time unit), then the i'th entry of p should be zeroed in the

4 The semantic model of PDC is the finite probability space (Vt, ,) induced by G, where
Vt is the set of behaviours (state sequences of G) of length t and p is the probability
measure which assigns a probability to each behaviour. This probability is the product of
the initial probability and the transition probabilities involved in the behaviour. PG(D)[t]
is then defined as the sum of the behaviour probabilities for the subset of behaviours which
satisfy D over the first t time units.
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matrix expression for p(D)[t + 1]. If D is violated by a transition from state i
to state j, then the entry at location (i,j) in P should be zeroed.

The DC formula for Des-1 places no restriction on the choice of initial
state, and accordingly no entry of p needs to be zeroed. However, the formula
is violated for all transitions such that there is Leak before as well as after
the transition. This is because such transitions imply existence of Leak states
lasting for at least two time units, whereas the formula only tolerate Leak states
lasting for at most one time unit. As previously observed, Leak (= -,Flame)
holds for the composite states 1 and 3 on Figure 2. This implies that the offensive
transitions are those associated with entries (1,1), (1,3), (3,1) and (3,3) in P.

5 Probabilistic Refinement

Let G, and G 2 be the closed PA's representing two designs andiet D represent
a common requirement for these designs. Then G 2 is said to refine G, with
respect to D if, and only if:

Vto > 0*. a2 (D)[to] > IAG, (D)[to]

We shall now examine this for various Gas Burner designs and for Des-i.
First we notice that if to - 0, then Des-1 will be trivially satisfied for any

design G, i.e. JAG(Des-1)[0] = 1. The reason for this is that in the formula for
Des-1 the left side of the implication, i.e. rLeakl, is false for a point interval
(a leak state must last for at least one time unit).

For to > 0 we make the substitution to = t + 1, t > 0 and compute
/A(Des-1)[t + 1] from the matrix expression p'- ( 1,)t.

As previuosly explained, with Des-1 as the D formula, p' = p. This, in turn,
implies that the matrix expression will evaluate to 1 for t = 0. The reason for
this is that the sum of entries in p is 1 and (P') 0 is the identity matrix. This
result reflects that the initial Leak state (caused by the necessary gas release
before the first ignition) lasts for (at least) one time unit and does not violate
Des-I during the first time unit.

We will compare four designs of the Gas Burner .2

- Design 1 is a poor design. It has a Burner but no Detector (or the Detector
is permanently non-active). The PA: G1 for this design is shown in Fig 3a.
The probability matrices are

It is easy to prove (and intuitively clear), that AG (Des-1)[t + 1] = 0 for
t > 0. This reflects that the Gas Burner never will be able to establish
flame, i.e. to eliminate the initial Leak caused by gas release.

k.. |



39

P22 22 ;;22

a) Design 1. b) Design 3 c) Design 4.

Fig. 3. Various designs of the Gas Burner. (Design 2 is defined by Figure 2.)

Design 2 is thtel Gas Burner: (Burner m Detector) modelled

and analysed in the previous sections. Intuitively G2 (defined by Figure 2)
refies G, because it uses a detector which is not permanently failed. This
can be validated by computation of the matrix expressions for a suitable
range of t's.

Design 3 is the composite gasburner with a permanently active Detector.

Leak is detected immediately, but Ignition may still fail with probability
P11 within one time unit. The PA: G3 for this design is shown in Fig 3b.
Since Act is always true, there are only two states -,Flame and Flame to
consider. The probability matrices are

p-(1,0) p,=p p P11P12) I 0 P12)
P21 P22 P21 P22

Intuitively G3 refines G 2 because it uses a permanently active detector.
This can also be validated by computation of the U's over a suitable time
range.

Design 4 is the ideal composite Gas Burner. The Detector is perfect and
the ignition always succeeds within one time unit. The PA: G 4 for this
design is shown in Fig 3c.

The probability matrices are

p =(1,0) p' = p 0 p Op ,1 P,=p

FRom a theorem in [5] it follows, that with p' = p and P' = P the
matrix expression p'. (P,)t1. lc evaluates to 1 for all values of t. Therefore
pa4 (Des-1)[t + 1] = 1 independent of t and accordingly G4 refines all
other Gas Burner designs with respect to Des-1 (but of cause Design 4 is
not implementable).
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Verification is stronger than validation. However, proof of probabilistic re-
finement is a difficult area, and so far we can only offer the following theorem
applicable under rather special conditions [6].

For D-formulas such that pi(D)o[t + 1] = p'. (P,)t. 1, and for two designs
GA and GB with the same number of states, if all elements in p' are greater
than or equal to the corresponding elements in pA, and the same property holds
for P'B and P'A then GB refines GA with respect to D.

This theorem is applicable to Designs 1, 3 and 4 and proves that Design 4
refines Design 3 which in turn refines Design 1.

6 Conclusion

We have presented new results concerning composition, analysis and refinement
of probabilistic real time systems. The technique needs further consolidation
with regard to tools and theorems for validation and verification, and its prac-
tical applicability to realistic dependability problems remains to be tested.
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1. Introduction

The overall goal of a clinical laboratory is to analyse samples of blood and other
bodily fluids received from a patient, and to return the correct results to the
patient's doctor within a suitable period. Automated analysers are used in most
laboratories to analyse the various samples. Computer systems (LIMSl) are widely
used in laboratories to control, support and monitor the work done in the
laboratory, keeping pace with the increased analytical capability provided by these
analysers. In particular, a LIMS is typically used to control and monitor (at least):

* the working of the analysers, deciding what tests need to be done for
each sample by each analyser,

* the collating of requests and results, and
* the printing of the results.

The results of an analysis will directly influence the treatment of a patient -
treatment that can have potentially life-threatening consequences. For example, in
some types of suspected heart attacks, treatment is largely based on the results of
the analysis. The patient can die if the wrong treatment is administered. In a recent
case in the United Kingdom, a bank's computer system sent payments to the wrong

Laboratory Information Management System
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accounts. Consider what might happen (in the equivalent scenario) if the wrong
results were sent to a patient by the LUMS.

Consequently, although a LIMS is fundamentally an information system, it
must be classed as a safety critical system and developed as such. In the main,
however, these safety implications have not been considered in the development of
LIMS's. Furthermore, in contrast to other disciplines, little effort has been spent on
the standardisation and classification of the safety aspects of using computer-based
systems for medical care.

These problems will become more acute when LIMS's are linked to general
hospital information systems. In the long-term, this will make the laboratory results
accessible from wards in the hospital and from local GP surgeries. The aim of this
is to improve patient care. However, as more and more people have (instant) access
to the results, it is essential to ensure the integrity and correctness of any results
that are accessible from outside the laboratory.

This paper discusses the re-development of the LIMS at the WM, 2

undertaken as part of the MORSE 3 project and carried out jointly by WMH and
Lloyd's Register. The MORSE project uses a multi-disciplinary approach to the
development of safety critical systems, based on those proposed in the draft
Ministry of Defence standards 00-55 [1] and 00-56 [2]. This approach combines the
use of safety analysis with the use of formal development methods. This paper
describes the overall approach, and concentrates on the application of RAISE [3], a
particular formal development method, in the re-development of the LIMS. As
space will not allow a full description of the work, the use of RAISE will be
illustrated by describing the specification of certain key areas.

2. Simplified LIMS

A simplified layout of a LIMS is shown in Figure 1. This shows a complete
analytical loop, with the LIMS controlling a single analyser. It indicates how:

"* test requests are entered using a terminal,
"* the analyser receives the samples and requests, analyses the samples

and returns the appropriate results, and
"* the results are printed before being dispatched to the patient.

This is only one of many possible layouts, and in practice the LIMS would be
controlling several analysers. However, by using a single analyser, the description
of the LIMS is simplified as all test requests wili go to the one analyser. As a
further simplification, the validation and archiving of results is not shown here.

2 West Middlesex University Hospital
3 Method for Object Re-use in Safety-critical Environments
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Figure 1: The layout of a wn[d LIMS

3. Approach used to analyse the LIMS

The data handling in the laborary as a whole (including the LIMS) was described

and modelled before starting the safety analysis. The safety analysis produced an
asesument of the safety of the data handling, and an associated list of hazr. The
safety analysis of the UIMS is described in an accompanying pap and in [4]. This
descripon of the LIMS and the list of hazards was used as the basis for the formal

specification and re-development of the LIMS.
The entire LIMS was formally specified using RAISE. Safety prope•es that

emove or at least constrain the hazards identified by the safety analysis, were also
described and captured in the pe a . Thes properties can be thought of as
foninag a sfety cae for the LIMS. As RAISE is mathematically based, these
safety properties ae described as constraints on the behaviour of the LIMS.

Several components of the sysm, identified in the specification, have been
selec ad for further development. The selection, based on the safety assessmnent of
the labortory, will redevelop a complete analytical loop of the LIMS - from the
input of requests to the printing of results. Th development will be (rigorously)
veii to ensure that the safety properties identified in the specification are
maintained. It is intended that another safety analysis of the LIMS be carried out
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after the development to assess whether the re-development of the LIMS has
improved the safety of the LIMS.

3.1. Additional safety considerations

Ensuring that the LIMS functions correctly and preserving the integrity of the data
entrusted to it, is only part of what is done to ensure that the laboratory will meet it
goal. The reliability of the LIMS and of the laboratory as a whole must be
considered, ensuring that results will be returned to patients in time. This will
include the backing up of data, the presence of standby machines, contingency
plans for staff illness, etc.

The accuracy of the chemical analysis must also be considered. In the UK, this
is independently assessed by a central body. In this paper, however, only the LIMS
and its workings will be considered.

4. Some results of the safety analysis

In the safety analysis, several key areas were identified. Two of these will be
discussed here: the identification of patients from information on the request forms,
and the identification and collation of requests, samples and results.

4.1. Identification of patients

A database of all the patients who have been to the hospital is kept on a central
patient administration system. Each patient in this database has a unique hospital
number. If a request for a patient that has been to the hospital before, or is currently
in the hospital, is received, the patient's details are retrieved from the database. If
the patient's details cannot be found - if the patient has not been to the hospital, or
no match can be made - a new number is assigned to the patient.

It is extremely important that this matching of details is accurate. If the wrong
match is made, wrong details will be used. Consequently, the criteria for matching
details are (and must be) strict. If a satisfactory match cannot be made, the patient
is treated as new, rather allowing wrong details to be used.

4.2. Identification and collation of requests, samples and results

Samples and requests are assigned a unique label or identifier when they are
received at the laboraory. This label makes it possible to distinguish samples from
different patients, and is used to track requests and samples in the laboratory and
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for matching up results with the appropriate requests. This labelling is essential to

the working of the laboratory.

5. Spedfication of the system

The main activities carried out in a laboratory are described below: receiving
requests, analysing samples, and collation and printing results. A simple model of
the LIMS is defined, describing how the LIMS supports these activities. Using this
model of a LIMS, we will introduce some constraints on the system. These
constraints will capture some of the safety properties of a LIMS.

This model will contain a simple information model, detailing the minimum
amount of information that is needed for a LIMS to work effectively. Considerable
detail is omitted by using under-specification, while still defining the essential
propes of the LIMS.

In this paper, the model of the LIMS will be sketched out using RAISE,
defining only the signatures of functions for the most part. The RAISE is not
complete, and not all the modules have been included.

Several activities carried out in the laboratory have not been described here. In
particular, the validation of the results has been omitted. During validation, the
accuracy, completeness (no results missing), and internal consistency of the results
is checked. The archiving of results has also been omitted. This is in no way
intended to imply that these activities are not essential in the laboratory.

5.1. Receiving requests and samples

When samples and requests are received at the laboratory, they are assigned a
unique label. A request will contain at least the patient details, and a list of the
tests to be carried out on the sample, as described in DATAMODELO.

scheme DATAMODELO = clma
type

PatientDetails, Sample, Testld,
Request --

_(patient detail : PatientDetails, testrequests : Testld*)
end

Normally, requests will also contain: the name of the referring doctor, the
location for of the doctor, the time and date of sampling, any relevant clinical
information, the type of the specimen, and any special information or precaution
relevant to specimen collection or handling.

We will also assume that each request is related to a single sample. In practice
this is not be the case and a request can relate to several different samples.
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5.1.1. Ideuutifyng the patient

When a request is received, it will normally contain the patient's surname, initias,
date of birth and possibly a hospital number. For this paper, a matc can be made,
match-jound, if the patient's hospital number and surname match, or if the
surname, initials and date of birth math

schemne DATA-IODEL1 = extend DATA-MOOELO with class,
t4p HoepitalNum, Date, Name, Initials
value no~num: HospitalNum
value patientjd: Request -*HospktaNum

value
surname: PatientDetaflt- Name,
initials: PatientDetails -* Initials,
dob : PatientDetails -* Date

end
no-numn is used to denote no hospital number on the request form. The patient
database is represented as a mapping from HospitalNum to PatientDetails.

eche--e LIMS1 (D: DATAMOOELI) = class
varIkle patientdcb : D.HospitalNum -m-+4 D.PatientDotails
value
P* Match using hospital number.7
matchjid: D.Requeet -+ reaid any Badl
matchid(r) -mlet i = D.patient-id(r) In

let req..detals = D.patienk-details(r), dbdetails = patiencdb(i) In
D.sumame(req-details) = D.sumame(db-details)

end end
pre D.patientjd(r) e dorm patient-jib,

PMatch using patient deftaiW
match...deails : D. Request -+ read any Bool
match...details(r) = (3Hi: D.HospitalNum * i e damn patient-db A

let req-detail = D.patient.details(r), ib-detail = patientAb(i) In
D.sumamne(req...details) = D.sumame(db...details) A

D~nintials(req..details) = D.Imitial(Odb.etails) A

D.dob(db...details) =D.dob(req..Aetails) end)
pro D~patientjd(r) =D.nojtnum V D.pateentjd(r) it dorm patienft~d



matchjound: D.Request -~read anyi Bool
match-jou 'nd(r) a

Nf D.pafentijd(r) e dom patient-cdb then match-id(r)
lebe match...detaids(r) end

axiom [abase-consistencyn D.no...num i domnpatient-db

For the database to be consistent, no-num cannot be used to identify a patient's

5.1.2 Identifying the requests and the samples

For each request and accompanying sample that is received, a new label is created
and assigned to that request The details of the request with this label are entered
into the LIMS, entertest. As the collation of results with requests depends on the
label being unique, the LIMS must guarantee that different requests with the sm
label canno be entered.

theor THUIMS2: axiom
/I Assuming no duplicat.% enter-test wil not create a labelled
/I request which has the same label as another request. .
In class object D: DATAMODEL2, L: LIMS2(D)

value P* Check that no two requests have the same label.7
no..duplicates: Unit -+ read any Bool

end I-
VI : D.Label, r : D. Request * L~enterjtest(I, r) ; no...duplicateso

Lenter..test(I, r) ; true pre no...uplicates() A LlabeLused(I)
end

5.2. Analysing the samples

Afte the samples are labelled, they are prepared for analysis and are passed to the
analyser. For each sample received by the analyser, it must:

"* identify the sample, using the label on the sample,
"* get the list of tests required for the sample,
"* performn the necessary tests, and
" reurn the results of the tests.

The result of a test must contain details of what test was done. Furthennore each
result must also be labelled with the same label as the request so that the two can be
collated.
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scheme DATAMODEL3 = extend DATAMODEL2 with class type
AnalyserRequWet -= .-(label : Label, testid : Tetid),
TestResult .= _(testid : Testid),
AnalyserResult == jlabel: Label, testjresult : TestResult)

end

5.3. Collating and prindng the resuits

After the samples are analysed, the results must be collated with the tests to ensure
that- all the tests have been performed, and that only the tests wanted have been
done. Th results of the tests are then collated with the patient details into a report.
This report is printed and is sent to the patient's doctor. This report must contain
the same label as the request to check that the request has been completed.

It cam be shown in this model that once a label has been assigned to a request,
it is never changed. Furthermore, the same label is assigned to each test and each
result associated with that request.

sh-eme DATA_MODEL4 = extend DATA.MODEL3 with clas type
Report -= jabel: Label, patientdetails: PatientDetails,

test_results : TestResult* ) end
In this model, it is assumed that reports are only printed when all the tests have
been completed. In practice this is not the case as some results may be needed
urgently and these will be sent to the patient's doctor as soon as they are completed.
However, it can be shown for this model (proved formally if necessary) that reports
are only printed after all the tests have been completed.

theory TH_LIMS4_I : axom
In clahs object D: DATA_MODEL4, L: LIMS4(D) end I-

VI: D.Label e L.report-ispDdnted(l) :* L.tests_completed(l) end
A further safety property of the LIMS is that spurious reports are not generated -
only reports for requests received by the laboratory will be printed.

theory THLIMS4_2 axWom
In clss objec D : DATAMODEL4, L: LIMS4(D) end I-
{ D.label(x) I x: D.Report * x e L.printed I C
4 D.label(y) I y : D.LabelledRequet * y e L.requests ) end

6. Concluding comments

"Thnis paper describes how the multi-disciplanary approach advocated by the
MORSE project has been applied in re-developing the UMS at the WMIL In
particular, the use of the formal method RAISE is demonstrated by defining a
model of a simplified LIMS. In this model, both the information and the
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functionality required by the LIMS to support the work done in the laboratory are
defined

By using RAISE, the properties of the LIMS can be investigated at the
spefication stage of the re-development (as shown here), rather at later stages of
the developmnea Some safety properties of the LIMS are also defined, showing
how hazards can be removed (or at least reduced). Furthermore, by using RAISE,
one can prove that these safety properties are maintained throughout the re-
development of the LIMS - from its specification to its implementation. This
ensures that hazards removed in the specification of the LIMS are removed from
the implementation of the LIMS. The effectiveness of this approach will be
messed after the second safety analysis is carried out after the re-development is
completed.
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Abstract

The task of safeguarding systems is to bring processes from dan-
gerous into safe states. A special class of safeguarding systems are
emergency shut-down systems (ESD), which, until now, are only
implemented in inherently fail safe hard wired forms. Despite their
high reliability, there is an urgent industrial need to replace them
by more flexible systems. Therefore, a low complexity, fault detect-
ing computer architecture was designed, on which a programmable
logic controller for ESD applications can be based. Functional logic
diagrams, the traditional graphical specification tool of ESDs, are
directly supported by the architecture as appropriate user oriented
programming paradigm. Thus, by design, there is no semantic gap
between the programming and machine execution levels enabling
the safety licensing of application software by formal methods or
back translation. The concept was proven feasible by a working
demonstration model.

1 Introduction

Many technical systems have the potential of disastrous effects on, for instance,
the environment, equipment, employees, or the general public in case of mal-
functions. An important objective of the design, construction, and commis-
sioning of such systems is, therefore, to minimise the chances that hazards
occur. One possibility to achieve this goal is the installation of a system whose
only function is to supervise a process and to take appropriate action if any-
thing in the process turns dangerous. So, to prevent hazards, many processes
are guarded by these so called safeguarding systems. A special kind of them
systems are Emergency Shut-Down systems (ESD), which are defined as:
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A system that monitors a process, and only acts - i.e., guides the
process to a static safe state (generally, a process shut-down) - if
the safety of either human beings, the environment, or investments
is at stake.

The mentioned monitoring consists of observing whether certain physical quan-
tities such as temperatures or pressures stay within given bounds and to super-
vise Boolean quantities for value changes. Typical ESD actions are opening or
closing valves, operating switches etc. Structurally, ESDs are functions com-
posed of Boolean operators and delays. The latter are required, because in
start-up and shut-down sequences often some monitoring or actions need to be
delayed. Originally, safeguarding systems were constructed pneumatically and
later, e.g., in railway signaling, with electromagnetical relays. Nowadays, most
systems installed are based on integrated electronics and there is a tendency
to use microcomputers.

The current (electrical) systems used for emergency shut-down purposes are
hard wired and each family makes use of a certain principle of inherently fail
safe logic. The functionality of an ESD system is directly implemented in
hardware out of building blocks for the Boolean operators and delays by in-
terconnecting them with wires. These building blocks are fail safe, i.e., any '

internal failure causes the outputs to assume the logically false state. Unless
implemented wrongly, this results in a logically false system output, which in
turn causes a shut-down. Thus, any failure of the ESD system itself will lead
to a safe state of the process (generally a process shut-down). This technol-
ogy, used successfully for decades now, has some very strong advantages. The
simplicity of the design makes the hardware very reliable. The one-to-one map-
ping of the client's specification expressed as functional logic diagrams (FLD) to
hardware modules renders implementation mistakes virtually impossible. The
"programming" consists of connecting basic modules by means of wires, stress-
ing the static nature of such systems. Finally, the fail safe character of hard
wired systems is a very strong advantage. But there are also disadvantages
that gave rise to the work reported here.

Economical considerations impose stringent boundary conditions on the de-
velopment and utilisation of technical systems. This holds for safety related
systems as well. Since manpower is becoming increasingly expensive, also safety
related systems need to be highly flexible, in order to be able to adjust them
to changing requirements at low costs within short times. In other words,
safety related systems such as ESDs must be program controlled in order to
relinquish hard wired logic from taking care of safety functions in industrial
processes. Owing to their simplicity, the most promising alternative to hard
wired logic in ESD systems are programmable logic controllers (PLC), which
can provide the same functionality. However, although a reasonable hardware
reliability can be obtained by redundancy, constructing dependable software
constitutes a serious, still unsolved problem.
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There is already a number of established methods and guidelines, which have

proven their usefulness for the development of highly dependable software em-
ployed for the control of safety critical technical processes. Prior to its ap-
plication, such software is further subjected to appropriate measures for its
verification and validation. However, according to the present state of the
art, these measures cannot guarantee the correctness of larger programs with
mathematical rigour. Prevailing legal requirements demand that object code
must be considered for the correctness proofs of software, since compilers are
themselves far too complex software systems, as that their correct operation
could be verified. Depending on national legislation and practice, the licens-
ing authorities are still very reluctant or even refuse to approve safety related
systems, whose behaviour is exclusively program controlled.

In order to provide a remedy for this unsatisfactory situation, it was the pur-
pose of the work reported here to develop a special - and necessarily simple
- computer system in the form of a programmable logic controller, which can
carry out safety related functions as required in emergency shut-down systems.
The leading idea followed throughout this design was to combine already ex-
isting software engineering and verification methods with novel architectural
support. Thus, the semantic gap between software requirements and hardware
capabilities is closed, relinquishing the need for not safety licensable compilers
and operating systems. By keeping the complexity of each component in the
system as low as possible, the safety licensing of the hardware in combination
with application software is enabled on the basis of well established and proven
techniques.

2 The Software Building Blocks

All emergency shut-down systems can be constructed from a set of function
modules containing just four elements, viz., the three Boolean operators And,
Or, Not and a timer. For reasons of simplicity we restrict the number of inputs ,.,

for both And and Or to two. The functionality is not effected, since any multiple
input function can be described with a finite number of the two input gates.
It is also sufficient to use only one type of timer. All other forms of timers
used in hard wired logic can be implemented by, if need be, adding inverters.
The timer has one Boolean input, I, one Boolean output, 0, an adjustable
delay time, t, and an internal state, d, with 0 < d < t. Its functionality can be
informally described as follows:

"* Initially, the input is false, the output is false, and the internal counter,
d, has assumed its maximum (as set), so d = t.

"* As the input becomes true, the output remains false and the counter, d,
decreases, i.e., the timer starts counting down.
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Counter Input Output
d = t true false

O < d < t true false
d = 0 true true
d = t false false

0 < d < t false false
d = 0 false false

Table 1: The timer output as function of input and counter value

"* As soon as the counter becomes zero and the input is still true, the output
turns true.

"* If the input is false, after having been true for less than the preset delay
time t, then the timer is reset. That is, the output becomes false and the
delay time assumes its initial (maximum) value.

"* If the input becomes false after d is 0 and, thus, the output has become
true, also a reset operation is performed.

We observe that there are two values that may have to be changed. First,
obviously, the logical output could change as a function of the input and the
internal state. Secondly, the interrel state may need updating, depending on
both the logical input and the internal state.

Although the number of internal states of the timer is numerous, three interest-
ing ones can be extracted, viz., d = t, d = 0 and 0 < d < t. They are displayed
in Table 1.

The functionality of the timer can be represented by a simple Boolean expres-
sion for its output: ..

o - (d = t) A I

What the module still lacks is a realisation of time. Hence, we define time,
with to < time < 0o. In a system time can be implemented in both hardware i
or software. For accuracy reasons, we have chosen a hardware solution: time
is implemented in form of a counter triggered by a quartz stabilised time base.

An implementation of the four functions modules discussed above has been
proven correct using predicate calculus [1]. This was trivial in the case of the
Boolean functions. The correctness proof of the timer was straightforward,
but took a few pages. The interested reader is referred to [2], because size
restrictions prohibit to include the proof into this article.
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3 The Software Engineering Paradigm

The analysis of functional logic diagrams suggests to introduce a new pro-
gramming paradigm, viz., to compose software out of high level user oriented
building blocks instead out of low level machine oriented ones. Whereas a single
machine instruction taken out of a program context does not reveal its purpose,
the occurrence of a certain function module instance usually gives already a
clue about the problem, its solution, and the module's r6le in it.

The development of ESD software is carried out by process engineers in the tra-
ditional way of drawing FLDs. The latter describe the mapping from Boolean
inputs to Boolean outputs as functions of time such as, e.g.,

if a pressure is too high then a valve should be opened and an
indicator should light up after 5 seconds.

In Figure 1 an example of a FLD is given. The FLD describing the functionality
of an average ESD system contains thousands of blocks, laid out over many
drawing sheets.

Figure 1: An example of a FLD (with dyadic Boolean operators only)

This specification level programming method consists of graphically intercon-
necting instances of the above mentioned four basic function modules with each
other by lines, i.e., single basic functions are invoked one after the other and, in
the course of this, they pass parameters. The interconnections between func-
tion blocks have to meet just one restriction: each input must be connected to
exactly one output. Besides the provision of constants as external input pa-
rameters, the basic functions' instances and the parameter flows between them
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are the only language elements required by this programming paradigma.

A compiler transforms the graphically represented program logic into object
code. Owing to the simple structure, this logic is only able to assume, the gen-
erated programs contain no other features than sequences of procedure calls
and some internal moves of data. The verification of the compiler transform-
ing the graphical software representation into object code is still impossible -

but also not necessary, because for FLD software only the module interconnec-
tions need to be verified. As outlined below, for this task the architecturally
supported method of back translation is employed.

4 The Architectural Concept

In order to facilitate the conceivability of the implemented software and of its
execution process, we design an architecture for an ESD oriented programmable
logic contioller with, conceptually, two processors:

"* a control flow processor (master) and

"* a basic function block processor (slave).

Thus, we achieve a clear and physical separation of concerns: execution of the
basic function modules in the slave processor and all other tasks, i.e., execution
control, sequential function chart processing, and function module invocation,
assigned to the master. This concept implies that the application code is re-
stricted to the control flow processor, on which the project specific safety li-
censing can concentrate. Special architectural support for the cyclic operating
mode of programmable logic controllers is implemented in the master processor.
To enable the detection of faults in the hardware, a dual channel configuration
has been chosen, which supports diversity in form of different master processors
and different slave processors.

At least one of the master processors should have the most simple organisation
possible for the considered application requiring only two instructions, one of
which is MOVE. The other one implements a special architectural support for
the cyclic operating mode of PLCs. Since only one step is active at any given
time, a memory protection mechanism prevents the erroneous access to the
program code of the inactive steps. The STEP instruction is the only means to
perform a branch. It solely allows to return to the initial address of the active
step's program code if the corresponding transition condition is not fulfilled.

The capabilities of the slave need to be somewhat more complex and are implied
by the operations of the four basic function modules. The objective of a PLC
for ESDs suggested to employ the VIPER [3] chip in the slave, because it
is the only available microprocessor whose design has been formally proven
correct. The slave processor performs all data manipulations and takes care
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of the communication with the environment. It has no program RAM, but
only executes the basic function modules whose code is contained in firmware
ROMs.

To recognise hardware faults, all processing is simultaneously performed on
two master/slave pairs. A number of c.>mparators checking the outputs from
the master processors before they reach the slaves and vice versa completes
a fault detecting two-channel configuration. The master and slave processors
communicate with each other through two FIFO-queues. They execute pro-
grams in co-ordination with each other as follows. The master processor lets
the slave execute a function block by sending the latter's identification and the
corresponding parameters and, if need be, also the block's internal state values
via one of the FIFO-queues to the slave processor. Here the object program
implementing the function block is performed and the generated results and
new internal states are sent to the master processor through the other FIFO-
queue. The elaboration of the function block ends with fetching these data
from the output FIFO-queue and storing them in the master's memory. To
avoid faults during operation, the function modules' object code is put in the
slave's read-only program memory, after the correctness of the code has been
established. The master/slave configuration has been chosen to physically sep-
arate two system parts from one another: one whose software only needs to
be verified once, and the other one performing the application specific part of
the software. Needless to say, that the latter requires indvidual safety licens-
ing. This concept implies that FLDs are solely mapped onto the control flow
processor, to which project specific safety licensing can be restricted. Figure 2
gives a conceptual diagram of the master/slave PLC architecture.

PROM

R
Master Processor A

M

SW-IC-ROM

Figure 2: Configuration of a PLC with master/slave processors

In available PLCs, the execution time for a step generally varies from one cycle
to the next depending upon the program logic performed and the external con-
ditions evaluated each time. Therefore, the measurement of external signals
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and the output of values to the process is usually not carried out at equidis-
tantly spaced points in time, although this may be intended in the control
software. To achieve full determinism of the time behaviour of programmable
logic controllers, a basic cycle is introduced. The length of the cycle is selected
in a way as to accommodate during its duration the execution of the most
time-consuming step occurring in an application. It is supervised that the exe-
cution time of a step does not exceed this cycle period by awaiting, at the end
of the step's program processing and after the evaluation of the corresponding
transition condition(s), the occurrence of a clock signal, which marks the begin
of the next cycle. An overload situation or a run time error, respectively, is
encountered when the clock signal interrupts an active application program. In
this case a suitable error handling has to be carried through. Although the in-
troduction of the basic cycle exactly determines a priori the cyclic execution of
the single steps, the processing instants of the various operations within a cycle,
however, may still vary and, thus, remain undetermined. Since a precisely pre-
dictable timing behaviour is only important for input and output operations,
temporal predictability is achieved as follows. All inputs occurring in a step
are performed en bloc at the beginning of the cycle and the thus obtained data
are buffered until they will be processed. Likewise, all output data are first
buffered and finally sent out together at the end of the cycle.

5 Safety Licensing

With the implementations of all four basic function blocks employed in FLDs
having been proven correct and, as parts of the architecture, being invisible
from the application programming point of view, for any new ESD project
only the proper mapping of a particular interconnection pattern of invoked
function block instances on object code needs to be verified. For this purpose
we subject the object code loaded into the master processor to back translation,
a safety licensing method [4] which was developed in the course of the Halden
nuclear power plant project and which is - although rigorous - essentially
informal, easily conceivable, and immediately applicable without any training.
Thus, it is extremely well suited to be used on the application programming
level by people with the most heterogeneous educational backgrounds. The
ease of understanding and use inherently fosters error free application of the
method. It consists of reading machine programs out of computer memory and
giving them to a number of teams working without any mutual contact. All by
hand, these teams disassemble and decompile the code, from which they finally
try to regain the specification. The software is granted a safety license if the
original specification agrees with the inversely obtained re-specifications. Of
course, in most circumstances the method is extremeiy cumbersome, time con-
suming, and expensive. This is due to the semantic gap between a specification
formulated in terms of user functions and the usual machine instructions carry-
ing them out. Applying the programming paradigm of basic function modules,
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however, the specification is directly mapped onto sequences of module invoca-
tions. The object code consists of just these calls and parameter passing. The
implementation details of the function modules are part of our architecture.
Thus, they are invisible from the application programming point of view and
do not require safety licensing in this context. Consequently, back translation
can lead, in one easy step, from machine code back to the problem specification,
which is given in the form of FLDs. For our architecture, the effort required to
utilise the method of back translation is by several orders of magnitude lower
than for the von Neumann architecture.

Back translation is a verification method to the carried out with diverse redun-
dancy. Originally, this called for different teams of human inspectors. Since in
the case considered here there is only one rather simple inverse analysis step,
we are optimistic that the licensing authorities will eventually accept the fol-
lowing procedure. Verification by inverse analysis is carried out by a number
of different programs, which should be proven in practice but do not need to
be formally verified. Such programs are to yield graphical outputs. An official
licensor performs the inverse documentation as well, compares his results with
the ones of the verification programs and with the original graphical applica-
tion program under inspection and, upon coincidence, issues a safety license.
Such a procedure is in line with the dependability requirements for diversely
redundant programs demanded by the licensing authorities and necessitates
only the minimum of highly expensive human involvement, viz., one licensor,
who is always indispensable to take the legal responsibility for issuing a safety
license.

In order to prevent any modification by a malfunction, in our safety oriented
architecture all programs must be provided in ROMs. For practical reasons,
generally there are two types of these memories. The code of the basic func-
tion modules resides in mask programmed ROMs. On the other hand, the
code representing FLDs is written into (E)PROMs by the user. This part of
the software is subject to project specific verification to be performed by the
licensing authorities, which finally still need to install and seal the (E)PROMs
in the target PLCs.

6 Conclusion

In our society there is a growing concern for safety (which goes hand in hand
with the increasing awareness for the environment). This has important con-
sequences for the assessment of program controlled systems. One has begun to
realise the inherent safety problems associated with software. Since it appears
unrealistic to abandon the use of computers for safety critical control purposes
- on the contrary, there is no doubt that their utilisation in such applications
is going to increase considerably - the problem of software dependability is
exacerbating.
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In a constructive way, and using presently available methods and hardware
technology only, in this paper for the first time an architecture was defined,
which enables the safety licensing of a complete programmable electronic sys-
tem including the software. The measures to achieve this objective were:

* using hardware as much as possible, but not necessarily in the most
(hardware-) cost efficient way, since now there is cheap hardware in abun-
dance (the additional hardware costs are equivalent to the cost of a soft-
ware engineers for about half a day),

* utilisation of a high level, graphical software engineering method,

* closing of the semantic gap between architecture and user programming
by basing the software development on a set of function blocks with ap-
plication specific semantics,

* removal of compilers from the chain of items requiring safety licensing,

* avoiding the need for a complex operating system, and

* by providing a feasible application level and architectural support for the
software licensing method of back translation.

Employing VIPER microprocessors, we have built a prototype of the PLC ar-
chitecture described. Its utilisation in practice showed that implementing the
functionality of a hard wired ESD system with our PLC architecture is feasi-
ble, and that the programming paradigm based on formally verified function
modules can render error free software. We hope that the concept presented
here will lead to the replacement of hard wired systems safeguarding industrial
processes by programmable ones executing safety licensed and, thus, highly
dependable software.
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Abstract

This paper starts with a general description of the AEG Transpor-
tation Systems, Inc. Automatic People Mover System. Subse-
quently, the specific safety requirements of the ATP, and the con-
sequent design features to meet these requirements are described.
Following this introduction, details of the relationship between
designer and certifier, the utilization of embedded rules-based
systems, the concurrence of the design and certification process,
and the de-coupling of the safety functions from the hardware are
given. It is described how the dramatic improvements in the tradi-
tional large costs and long schedules normally associated with
both the design and certification of safe computer systems are
made possible.

1 General Description of the Automatic People Mover

1.1 Overview

The AEG Automatic People Mover System consists of driverless operated trains
which usually run on a guideway with a concrete surface. The trains are guided by
an I-Beam and may be configured as consists of one, two or more vehicles. The
access of passengers to the guideway is prohibited by automatically operated station
doors, which are normally closed. They open in synchronism with corresponding
vehicle doors for passenger exchange only when the train is in the station and the
doors on both sides (vehicle and station) are properly aligned. The operation of the
Automatic People Mover System is controlled and supervised by the Automatic
Train Control System (ATCS). At Frankfurt Airport the headway is designed to be
down to 90 seconds. The Frankfurt Airport Passenger Transfer System will be the
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first application of the new Automatic Train Protection system design which is
described in this paper.

1.2 Automatk Train Control System

1.2.1 General Overview

The Automatic Train Control System consists of three major computer-based
subcomponents with different functions. The Automatic Train Protection (ATP)
ensures the safety of operation such as the safety of moving trains or passenger
exchange in stations. The ATP does not allow unsafe system states. The Automatic
Train Operation (ATO) provides operational control of train speeds, programmed
station stopping, station and vehicle door operation, as well as passenger audio and
visual information. The third function, the Automatic Train Supervision (ATS), is
responsible for the supervision of the Automatic People Mover systems, route and
headway control, and reporting of alarms.

The Automatic Train Protection system consists of two major sub-systems, the
Wayside ATP and the Vehicle ATP. Each is based on vital dual channel cross-
checked computers and other vital 1/0 hardware. The safety functions of these two
subsystems satisfy specific safety requirements on the ATP as identified in the
Safety Requirements Catalog (see chapter 2 Safety Requirements). Below, the
allocation of safety functions to either Wayside or Vehicle ATP is given.

1.2.2 Wayside ATP

The Wayside ATP fulfils the following major safety functions:
* Detection of Trains
• Provision of Safe Speed Codes (Selection and Transmission)
* Safe Switch Operation
* Safe Station Door Operation
• Vital Inputs and Indications for the Central Control Operator
* Protection of Maintenance Vehicle

1.2.3 Vehicle ATP

The Vehicle ATP serves, among others, the following purposes:
"* Reception of Speed Commands
"* Supervision of Actual Train Speed
"* Supervision of Safe Travel Direction
"• Safe Vehidle Door Operation
"• Safe Station Stopping
"* Safe Reaction on Unintentional Train Separation
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2 Safety Requirements

2.1 Analyses of Potential Hazards and their Causes

As comprehensive as possible all potential hazards and their causes are identified by
means of a Safety Analysis. In the early phases, this analysis : )mprises the High
Level Fault Tree Analysis (HLFTA) and the Preliminary Hazards Analysis (PHA).
Hazards such as collisions with switches or other trains, end-of-line run-through,
passengers gaining access to the guideway, or overspeed in curves are considered
carefully in the HLFTA and the PHA. These analyses provide the designers of the
ATP with very detailed information on the possible causes of potential hazards
which, in turn, provide all necessary means and measures to protect against these
hazards. The necessity of these means and measures is documented in the Safety
Requirements Catalog (SFRC). This document states all requirements for safety
functions which need to be fulfilled by the ATP in order to ensure safe operation of
the Automatic People Mover System. The Safety Requirements Catalog is the basis
for all further ATP-related development and certification steps.

Correcting the problems early in the design and development process usually is
much less expensive than fixing them later in the process. As the hazards are
identified very early in the design and development process by the above-mentioned
Safety Analysis, the requirements are determined very early and hence additional
costs in order to fix problems later are minimized.

2.2 Results of Safety Analysis and Consequent Design Principles

Most of the potential hazards identified during the safety analysis might lead to
injury or death of persons or damage to equipment. Generally speaking, the worse
the potential consequences of the hazards are the more rigorous the measures to
avoid them must be.

One might have the idea to differentiate between each safety relevant function
according to its potential damages in order to engage different means and measures
to protect against the respective risk. But many of the functions are implemented by
the use of software. This makes it difficult to ensure that functions of a lower
integrity level do not have any unsafe impact on those functions which protect
against higher risks.

Due to these difficulties, each function of the ATP is considered to be of high
safety relevance and hence is designed in a vital fashion. Functions which have no
safety relevance are allocated to the Automatic Train Operation System (ATO). For
instance, while the ATO controls the doors such that station and vehicle doors open
synchronously, the ATP ensures safety by not allowing the vehicle to move if either
the station or the vehicle doors are not closed and locked. Both computers are
separated such that the non-vital ATO can not interfere with the vital ATP. This
strict separation of vital and non-vital functions minimizes the verification,
validation and certification effort necessary for the vital ATP and for the entire
Auton-tic Train Control System.
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The very fundamental regulations for the certification of the Frankfurt Airport
Automatic People Mover are BOStrab [1] and DIN VDE 0831 [2]. As far as
DIN VDE 0831-the German standard for electrical railway signalling systems-is
applicable, all ATP functions are designed to be signal-safe. In other cases, where
neither BOStrab nor DIN VDE 0831 are immediately applicable-in case of software
for instance-other German or international standards which represent the current
state of the technology are applied. This is required by BOStrab. For instance,
DIN V 19250 [3], DIN V VDE 0801 [4] or MU 8004 [51 are applied. According to
DIN V 19250 [3], the ATP is categorized as of Anwendungsklasse (Integrity Level)
7. Consequently, applicable recommendations of DIN V VDE 0801 are followed.

All the components of the PTS are designed with an inherent high level of reliabi-
lity so as to deliver an overall system availability of 99.65% or higher. This level,
demonstrated quantitatively, is established by contract and consistent with actual le-
vels reached in numerous operating installations of the AEG people movers.

2.3 Design of Vital Hardware-Examples

The safety of a computer-based train control system depends directly on the
reliability of the underlying hardware. The hardware must fulfil its specified
functions correctly and safely. Failures must not lead to unsafe states [2]. Hence,
failures of hardware components need to be considered carefully.

Some failures can be excluded by the application of vital design properties. Other
failures cannot be excluded and need to be detected to ensure that the system goes to
a safe state in case of such failures. The following sections describe these vital de-
sign principles by means of examples taken from the Automatic Train Protection
system.

2.3.1 Dual Channel Cross-Checked ATP Computers

The ATP computers which have to ensure the safety of operation are designed as
dual channel cross-checked computers. Both computers cross-check each other
continually. Each single computer channel compares the inputs and outputs to and ' -

from the actual process with the equivalent data from the other channel before it
allows the transition from one safe state to another state. If one computer detects a
mismatch of cross-checked data, immediately appropriate actions are taken to
transfer the system to a safe state, which is the shut-down of the concerned
guideway portion. All vehicles in this section will come to a stop and any further
movement is prohibited by the ATP until personnel has fixed the problem and the
ATP checked and confirmed that safe operation is restored.

2.3.2 Occupancy Detection and Speed Code Distribution (TX/RX System)

The Occupancy Detection of the Automatic People Mover System is based on Track
Circuits. A Track Circuit is occupied through 'short-circuit' by multiple shunts on
each vehicle. The Wayside ATP sends the appropriate speed commands to each ve-
hicle via the Track Circuits and the Transmit/Receive System is used to transmit the
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speed codes to the Track Circuits. Each Track Circuit is fed with speed commands
even when there is no train currently occupying it. If there is no train, the sent speed
codes are read back by the Wayside ATP. They are then compared against the trans-
mitted codes. If they do not match, a failure in the Transmit/Receive System is
assumed and a shutdown is initiated. This ensures a periodic test and failure detec-
tion of the Wayside ATP components engaged in the Speed Code Distribution and
Occupancy Detection. Here, the fulfilment of Failure Detection Period
Requirements is designed into the system.

2.3.3 Failure Detection Periods

Other components may not be guaranteed to be tested within their specific failure
detection period by the above-mentioned approach. Here, other measures need to be
taken to ensure the necessary periodic tests.

One approach to test these components, for instance, is that the ATP performs pe-
riodic checks of their operation. Since the respective outputs are verified by a read-
back, the component can be considered tested if it is operated and no failures are
encountered. If that is not the case, the ATP alarms this fact to the Central Control
Operator in order to take appropriate action.

2.3.4 Failure Exclusions and Fail-Safe Design

In other cases, failures are excluded by the use of special design properties, such as
German signal relays and so-called gravity drop-out relays. Here, the correct
function of the relay is ensured by the chosen mechanical design, weights and gravi-
ty. Other components are designed in such a way that all failures which are to be
assumed will always lead to a safe state.

2.4 Development of Safety Relevant Software

The safety relevant ATP software is developed using the high-level language Pascal.
The compiler used to generate the object code is validated and proven. It supports a
module concept. Hence, the ATP software is designed according to industry-accep-
ted design principles of Information Hiding, Data Abstractions, High Cohesion, and
Low Coupling. This ensures low complexity and highly comprehensible modules.
Consequently, generation and verification of the source code is less error-prone.
Additionally, these design principles improve the maintainability which in turn
makes changes less error-prone and results in less effort. The verification and va-
lidation of the ATP software involves rigorous methods which are described in
Section 4.4.

3 Rules-Based Interlocking Engine

Conventional interlocking systems usually are designed for specific applications. In
the past, different guideway layouts or extensions to existing systems led to conside-
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rable effort to customize and certify each separate configuration of the wayside train
protection system. Furthermore-in case of extensions to existing systems-this ap-
proach led to additional system outages during the exchange of components. The
Rules-Based Interlocking Engine (RBIE) [61 has been designed to circumvent these
problems.

3.1 Overview

The basic principle of the Rules-Based Interlocking Engine is to make the imple-
mentation of safety functions independent from the underlying hardware and core
software of the ATP. The ATP becomes a generic means to realize safety functions.
This is accomplished by the following way. A description of the actual system with
application-specific information is supplied to the application-independent Wayside
ATP. To achieve this, a description of the system's layout and other details is crea-
ted. This description is called the Guideway Definition File. The Guideway Defini-
tion File is placed in the ATP (See Figure 1). The information in the Guideway De-
finition File is then transformed (parsed) into an internal representation suitable for
interpretation by the Rules-Based Interlocking Engine software. During runtime the
vital decisions of the Vital ATP Computer are based on generic interlocking rules.
These rules are evaluated by the Rules-Based Interlocking Engine regarding the
application specific relations as defined in the Guideway Definition File.
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Figure 1: Simplified Architecture of the ATP Computer with focus on the RBIE

Because of this strict separation of application-specific information in the Guide-
way Definition File from the generic Rules-Based Interlocking Engine embedded in
the Wayside AT?, the generic Rules-Based Interlocking Engine is certifiable as a
type. Once the Rules-Based Interlocking Engine is certified according to the
applicable standards and regulations, the effort for the development and certification
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of the interlocking of new systems is reduced to efforts related to the generation and
certification of a valid guideway definition file.

3.2 Guideway Definition File

As mentioned above, the application specific information on the people mover
application which the ATP is intended for is laid down in the Guideway Definition
File in a comprehensible and easy-to-read manner. Among others, the Guideway
Definition File gives information on the guideway layout, arrangement of stations,
allowable speeds and application-specific obstacles which might violate the
clearance profiles such as facade washers.

3.3 Validation of Guideway Definition File

The Guideway Definition File is a well-structured plain text and easy-to-read ASCII
file. The language is especially designed to be comprehensible to people mover
experts without any special software knowledge. Hence the validation of the Guide-
way Definition File may concentrate on the railroad aspects. Validation may be
supported through the graphical exercise of the information contained in the Guide-
way Definition File.

3.4 Advantages

The approach of the Rules-Based Interlocking Engine leads to improvements with
respect to safety as well as economics. The validation of application-specific design
characteristics is much less error-prone compared to conventional approaches.
Besides the safety aspects this approach is very cost-effective. Once the ATP with
its Rules-Based Interlocking Engine is type certified, time and efforts spent in the
configuration and certification of other ATP applications are reduced dramatically.

4 Project-Accompanying Safety Certification

4.1 Relevant Regulations and Standards

The first application of the described Automatic Train Protection system is the
Frankfurt Airport Passenger Transfer System (PTS). The system has been designed
according to German regulations, like the BOStrab [1], DIN VDE 0831 [2].

In cases where these regulations do not provide sufficient detail regarding the
safety requirements other standards are engaged that represent the state of technolo-
gy such as DIN V VDE 0801 [3] and MU 8004 [5].

4.2 Certification Process

The certification process conducted by the certifier Institute for Software,
Electronics and Railroad Technology (ISEB) within TUV Rheinland Sicherheit und
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Umweltschutz GmbH, consists of five major steps which concur with the
manufacturers development process:
"* Set-up of a Certification Plan
"* Review of manufacturer's Quality Assurance System
"* Adaptation of the certifier's configuration and documentation management

system to the manufacturer's documentation structure
"* Verification and Validation
"* Safety Trials
"* Compilation of a Final Report on the system's safety

In close cooperation with the manufacturer the Certification Plan defines kind and
scope of certification steps to be conducted by the certifier such as reviews, inspec-
tions, audits, analyses, and tests. The depth and thoroughness of the certifier's activi-
ties depend immediately on those activities which are planned and performed by the
manufacturer and on the insight and understanding which the certifier gains from
these activities.

Firstly, the basic steps of the certification process are defined in principle.
Concurrent to the certification process these basic steps are refined as the develop-
ment phases emerge. This process leads to a common understanding of the set of
relevant items which are subject to certification such as documents, processes, soft-
ware, and hardware components. For each relevant item, it is determined which ac-
tivities need to be performed by the certifier. The certifier then adjusts his configura-
tion and documentation management system to the set of relevant documents.
Furthermore, a schedule is agreed upon which defines the dates of the submittal of
certification relevant items as well as the duration of each certification activity.

The more rigorous and comprehensive the QA measures of the manufacturer are
and the better these measures are documented, the more the certifier may limit his
efforts to minimal measures to gain confidence in the manufacturer's QA measures.
For this reason the manufacturer's intended QA system is reviewed in the early
phases of the certification in close cooperation between the manufacturer and the
certifier. This is done based on appropriate documentation, e.g. Software Quality
Assurance Plans and Software Verification and Validation Plans taken from former
projects. Guidelines for documentation, design methods, coding standards, and
project management as well as the structure of test plans are established in these
early phases. The actual certification activities then consist of the following main
steps which are often similar even in different projects:
"* Review of Concept Descriptions
"* Validation of System Requirements
"* Validation, Verification and Certification of Hardware and Software
"* Integration Tests
• Safety Trials

In each phase of the certification process a close contact hetween certifier and
developers makes it possible to communicate emerging problem., as soon as possible
and hence fix them as early as possible.

The following sections describe the methods engaged during the development of
the Automatic Train Protection system. This only provides an impression of the cer-
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tification process. A detailed description would have exceeded the boundaries of this

paper.

4.3 Hardware Certification

The hardware certification consists of the review of documentation pertinent to all
ATP hardware components. Among others, Lower Level Fault Tree Analyses, Envi-
ronmental Analyses, Descriptions and Specifications, Detailed Hazards Analyses,
FMEA, Worst Case Analyses, Test Plans and Test Results for each component are
inspected and, when necessary, supplemented. Boards and other components are
inspected thoroughly. For instance, the creepage distances are examined carefully.
Some components such as relays are tested thoroughly by the certifier. The
execution of tests of other components by the manufacturer are witnessed.

4.4 Software Validation and Verification

4.4.1 Software Life Cycle and QA System

The software is developed by the manufacturer according to a software life cycle
model consisting of a Concept Phase, Requirements Phase, Design Phase,
Implementation Phase, Test Phase (Unit Tests through System Integration Tests),
Installation and Checkout Phase, Operations and Maintenance Phase. For each
phase, the Software Quality Assurance Plan and Software Verification and
Validation Plan exactly define the specific tasks of design, verification and
validation. The entity (development or V&V) responsible for performing a
particular task, as well as the means for documenting the task results, are defined. A
group of engineers is assigned by the manufacturer to be responsible for all V&V
effort . These engineers are independent from the development engineers. This leads
to a high quality of items submitted to the certifier and consequently less
certification effort.

Besides the definition of V&V tasks, the manufacturer's Quality Assurance
System takes into account further regulations such as Coding Standards,
Documentation Guidelines, or Software Requirements Specification Procedures.
Each component of the Quality Assurance System is assessed by the certifier.

4.4.2 Validation and Verification Methods

All documents have been validated and verified thoroughly by the certifier with
methods like walk through, reviews, inspections, and static analysis. The manufactu-
rer conducts comprehensive tests on units, during software integration, and during
system integration. These tests are witnessed by the certifier. Prior to the actual test
execution, the certifier reviews the test plans generated by the manufacturer's V&V
Group in order to ensure that all relevant system states are tested. When necessary
the certifier supplements these test cases. In order to achieve a comprehensive set of
test cases the Cause-Effect Graph Method is used by the manufacturer's V&V group
to define the requirements-based Black Box test cases. Black Box tests are executed
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first and branch coverage achieved by these cause-effect graph based test cases is
measured. If this coverage does not reach 100% branch coverage, additional White
Box tests are conducted. This systematic test approach leads to comprehensive tests
of the ATP software.

4.4.3 Type Certification

As soon as certain components (sub-components, boards, computers, software com-
ponents like the Rules-Based Interlocking Engine) are type certified they may be
regarded as building blocks. The certification of a specific application may then
focus on the correct application of these building blocks and the validation of
application-specific configuration data.

5 Conclusions

The chosen approach leads to improvements in costs, scheduling and safety. These
improvements are made possible mainly by the flexibility and reusability of the
Rules-Based Interlocking Engine, the flexible and effective concurrent certification
process, and the manufacturer's development-independent Quality Assurance
activities. In turn, as shown above, the rigorous verification and validation measures
ensure the safety of the Automatic Train Control system with the above-mentioned
significant cost improvements.
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1 Introduction

Since the installation of the first mechanical interlocking in 1856, railway signal
engineers have developed a set of rules which define the essential requirements
for safe train movement. In the majority of cases this set of rules can be
expressed as a closed set of boolean equations which, when implemented as
written, yield a safe operating system. The boolean equation set will vary
depending upon the particular requirements of each application. The set of
general rules are imposed on the specific requirements of each application to
yield a closed set of boolean equations which completely describe the safety
and operational requirements of that application.

By implementing the set of equations with hardware elements which have
known failure modes it is possible to not only create a safe operating system
but also a failsafe operating system. For the past 50 years, this has been
accomplished using the 'safety relay.' The 'safety relay' has a known set of
failure modes. More importantly, it has by design eliminated some failure
modes which are common in general purpose relays. This relay is designed,
such that its front contacts will not be closed unless the relay's coil is properly
energized. While this allows the signal engineer to implement a safe system,
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designing a relay to have a particular set of failure characteristics results in

relays which are costly and physically large (GRS B1 relay is approximately
16 cm x 2.5 cm x 8.6 cm. and weights about 4 kg). Even a simple application
may use in excess of 100 relays and have more than 1000 wire connections.

While relay based systems are very robust, they are also very inflexible.
Changes to the control system requires the addition, deletion or modification
of relays and interconnecting wires. This is labor intensive and in many cases
it requires physical space that is not available. The microprocessor on the
other hand offers extreme flexibility, small size, and low cost. However, it also
offers hardware with a set of failure modes which cannot be totally defined,
and, therefore, cannot be used to achieve a failsafe system based on failure
characteristics. Thus, the challenge is to develop an algorthm that will allow
the microprocessor to be used to solve boolean expressions in a way that insures
that any and all failures which might affect the attainment of correct results
are rvealed and used to force the system to a known safe state.

One approach that has been implemented in safety critical applications
is the use of multiple processors checking each other. This approach is im-
plemented in various ways including: two or more identical processors with
identical software, two or more identical processors with diverse software and
two or more different processors with diverse software. In each case process re-
sults are checked for agreement, and the lack of agreement is used to force the
system to a safe state. Each of these implementation methodologies has areas
which must be thoroughly analyzed before they can be accepted as producing
a failsafe system.

The identical processors using identical software approach requires that the
initial software be proven to be completely error free. This technique is only
effective in revealing independent hardware failures which cause the checked
results to differ. It does not protect against software design errors. If both
systems have the same embedded flaw then they will both act on it the same and
the flaw will not be revealed. Proving that the software contains no embedded
flaws or is error free is difficult if not impossible [1].

The use of identical processors with diverse software requires proof that the
software is actually diverse. If the software is written to the same specification
for the same processor, using the same command set the level of diversity of
the final set of software appears questionable. Also, it appears to be difficult
to prove that the software is actually diverse enough to reveal all embedded
errors and/or hardware failures.

The approach of using diverse hardware and diverse software would appear
to solve the problems of these other approaches, but it actually requires two
complete developments, two complete sets of hardware and two complete sets
of installation tests. This is costly, and hardware dependent. Also, in all of
these cases the voting or checking algorithm must be developed and analyzed
to prove that it provides the safe operation required.

These approaches, while not perfect, do offer the possibility that the micro-
processor can be applied to safety critical systems. However, they suffer from
serious practical problems related to the cumbersome analysis that must be
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done to validate the level of safety they provide in each installation. Much of
the analysis must be repeated, in detail, for each system that is installed.

In order to use microprocessors in the rail industry we determined [2] that
the solution must not only resolve the safety problem but it must also produce a
system that is; 1) analyzable and verifiable to some minimum level of safety, 2)
hardware independent, 3) application independent (such that it does not have
to be safety verified for each new application), 4) easy to apply to different
sets of boolean equations, 5) not based on proving the software to be error
free and 6) cost effective. The developed solution has been named Numerically
Integrated Safety Assurance Logic (NISAL) [3]. This solution is effective in
meeting the stated goals and, because it is numerically based, it allows the
upper bound of the probability of an unsafe event to be calculated [4]. This
then allows the lower bound of the mean time between unsafe events (MTBUE)
to be calculated. These calculations can be done once because they are an
intrinsic part of the system design. They do not need to be redone for each
application.

2 The Algorithm

The basic structure of a system that uses numerically integrated logic is shown
in Figure 1. A set of sensors which have relay contacts that are either open or
closed provides information on the state of the railroad system. These sensors
are probed by the system to determine their values, and the TRUE or FALSE
state is used in primordially safe boolean expressions to determine the proper
settings for the output devices.

Figure 1: Simplified structure of the system.

The safety of the process is assured by causing it to generate checkwords
that are used in a validation step by an independent agent, described below.
Each process step - evaluating a boolean expresion, verifying the state of an
input port, verifying the state of an output port setting, verifying that a sec-
tion of computer memory was cleared, etc. - generates a checkword, and each
checkword must satisfy the independent agent. In current implementations the
checkwords are thirty-two bit binary numbers. The operations are so structured
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that the system generates each checkword by correctly doing the associated op-
eration. If the operation is not done correctly then the checkword is effectively
a random pattern with only a small chance of being correct. Thus, incorrect
checkwords reveal inproperly done operations.

The independent agent consumes checkwords that are produced by the sys-
tem and provides the energy to operate the output devices. If the agent is not
satisfied with the sequence of checkwords it is receiving, it removes energy from
the system and causes it shut down in a known safe state.

Neither the system nor the agent "know" the correct checkwords in the
sense that they are stored in memory to be looked up. This would lead to the
possibility of improper operation being unrevealed due to the correct check-
word sequence being obtained from memory. As we have seen, the system
must generate them by proper operations. Similarly, the agent responds very
selectively to its input binary pattern. If the pattern is not correct then the
response will not support the continued flow of system energy. The response
characteristics are determined by the structure of the agent, which is matched
to the proper checkword pattern in a manner similar to the correspondence of
a matched filter to a particular signal.

The independent agent has two possible responses: (1) provide vital power,
and (2) remove vital power. Providing vital power is a positive action that
depends upon the correct input sequence. If the sequence is not correct, energy
is removed from the system and it shuts down safely. The operation of providing
or removing vital power can be accomplished in a number of ways, including
the use of a vital power supply or a vital relay.

To illustrate the nature of the checking process, consider the simplest pos-
sible situation - one in which there is a single expression to be evaluated.
Suppose that the states of input devices are represented by A, B, etc. and that
the logical value of the expression is represented by z as in the equation

z = ABC + DE + FGHI +-.. (1)

z will have the value TRUE if and only if all of the variables in at least one of
the product terms are TRUE. (Values which should be false for the equation to
evaluate to TRUE would be complemented in the equation.)

Suppose that the TRUE and FALSE values of z are represented by N-bit
binary patterns, and that the TRUE pattern is unknown by the evaluator. The
proper pattern is produced by scanning the expression until the first product
term that has proper values for a TRUE result is found. The parameters in that
term are processed by the evaluator, in a manner described below, to produce
an N-bit pattern for z. If no product term is found that has proper values for a
TRUE result, then the N-bit FALSE pattern is inserted for z. The system logic
is designed so that no FALSE result can cause an unsafe condition.

A large system will have many boolean expressions, but the principle is the
same. Each expression is processed to produce a binary pattern, which is used
as a checkword. By making the binary patterns sufficiently long, it is highly
improbable that they can be produced by chance. It is even more unlikely that
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a system with a hidden failure will produce a correct sequence of checkwords
by random selection.

The input sensors are read by transmitting particular digital patterns to the
input test circuits and observing the returned patterns. A particular sensor is
taken to have a TRUE reading only if the returned pattern is a codeword in
a suitable error detecting code. This, however, does not produce the vital
input sensor value. It only establishes a hypothesis about the setting of the
input port. Any TRUE setting is then verified by transmitting another pattern
through the port and using that pattern in the computations.

The settings of output devices are verified in a similar fashion. The state of
the devices are set by sending commands based on the results of the boolean
evaluations. The output states are then verified by transmitting state-dependent
patterns through the devices and using those results together with the intended
settings to produce the signal for the independent agent.

To guard against the possibility that some internal system failure could be
unrevealed by a particular checking algorithm, the system may be designed to
do a second set of checking operations that are informationally redundant but
algorithmically diverse from the first set. The current implementation produces
"a pair of checkword results for each operation, say z and x', each created by
"a separate checkword algorithm implemented as a finite-state machine with a
unique system matrix.

2.1 Structure of the Evaluation System

There are many ways to construct an evaluator which will produce a given
output pattern from a sequence of input patterns. A basic form is a finite-
state machine, which is started in an initial state and then stepped through
a state sequence. Each parameter in a boolean product term is represented
by a binary pattern, and those patterns serve as the machine inputs. Each
pattern in the input sequence influences the next evaluator state. The final
state is completely predictable from the initial state and the input sequence.
The evaluator output, which is a function of the final system state, will be a
proper binary pattern if it begins in the correct initial state and all of the input
parameter values have their expected patterns.

A table of initial conditions, one for each product term of each boolean
expression, is maintained. When a particular product term is to be evaluated,
the initial condition for that product term is taken from memory and used as
the initial state vector of the finite-state machine. The machine is then cycled
with the parameter value patterns as inputs. When all of the parameters have
been consumed the output is calculated as a function of the final state of the
machine. An independent evaluation of each boolean expression is done with
a second evaluator using parameters from the second input channel. The two
results, z and z', form the diverse pair of binary patterns.

The state of a finite-state machine at a particular time i + 1 is determined
by its state at time i and the inpu+ at time i. If the inputs are represented
by the sequence U = Jul, u2,..., uI} and if the states are represented by the
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sequence V ={v 1 ,v2,..., v , thfa

v =+1 = vT + ujU (2)

where T is thes stem matriz and U is the input matriz. If the system has
r internal states and . inputs, then T is r x r and U is a x r. The system
behavior is determined almost completely by the properties of T.

If the system is initialized to be in state vi, then the state vj+. can be
shown to be

vi+1 = viTV + •-•uUT- (3) "
j~!i

The state vj+ is a function only of the initial state v, and the sequence of
inputs Ul,.. us.

The checkword for the evaluation of a boolean expression is computed by
(1) finding the first product term that has proper parameter values to produce
a TRUE result (or directly produce the FALSE checkword as the value for z
if there is no such term); (2) selecting an initialization value for that product
term (the value of vi); (3) setting the initial value of the machine; (4) operating
the machine with the product term i as input uj; (5) after the n parameters
of that product term have all been entered, using vn÷1 as the system output.
Thus, the output is determined by the initial state and the input sequence.
For the algorithm to be useful for our purposes it must be possible to compute
the initial condition to produce the target output value for each parameter set
and it must be the case that an error in any bit of the initial condition or any
parameter will cause the system to produce a different output pattern.

It is a relatively simple matter to compute the initial condition required
to produce a desired target output t for a given input sequence U. In (3) let
i = n and set v,,l+- = t. Then sequentially step backwards through the states
by doing the calculation

Vi = (vi+l + uiU)T- 1  (4)

Multiplying by T- 1 is equivalent to stepping the machine backward. After n
steps we reach the desired value for the initial condition, vj.

The effect of an error in the initial condition or any of the inputs is related
to the dynamics of the system when it is allowed to operate with zero input.
Because the system described by (2) is linear, the effects of individual errors
can be found by superposition. The effect of an error in the initial condition
v1 can be seen by allowing the initial condition to be

411 = v1 + v1 (5)

where v, is the intended value, ve is the error, and ',1 is the initial condition
actually used. The final state from this state is

#"+, = #1T" + Eu 1 UT"n- (6)
j=1
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The difference between the actual final state and the intended final state can
be found by subtracting (modulo 2 addition) (3) with i = n from (6).

, = vn+1 +i = vTT" (7)

The above result shows that an error in the initial condition depends only on
the error value ve and the system matrix T. It does not depend upon the
intended initial condition or any input value.

Similarly, suppose that there is an error in a particular input value, say urn,
1 <m < n. Then im = un + u: replaces um in the computation of the final
state. The result is

n
,- = VlTn + E ujUT"' +u•UT- m  (8)

j=1

The effect of the input error is given by the last term in the expression.

= u•UT- m  (9)

Once again, the effect of the error does not depend upon the desired initial
condition or the desired input values. It is simply a product of the input error,
the input matrix, and the system matrix raised to the power n - m. The same
result would be achieved by starting the system in state u;U and stepping
it n - m times with no other input. The mechanism for an individual error
affecting the output is the system transient response, as determined by powers
of T.

Errors in other input parameters can be treated similarly. The total error
in the final state is given by

et = viTn + E u•UTV- m  (10)
m=1

Each error causes a system transient response to be reproduced. The total
error is the sum of the error transients set up by the individual errors. This
observation allows us to investigate the effects of errors on the system output
by examining the transient response, or the autonomous system response.

2.2 Autonomous System Response

An autonomous system has all inputs set to zero. If it is started in a state s then
the sequence of internal states is (s, sT, sT2 ,.. .}. The powers of the matrix T
must eventually begin to repeat, causing this to be a repeating state sequence.
The fact that powers of T must repeat is a consequence of the Cayley-Hamilton
theorem, which says that a matrix must satisfy its own characteristic equation.

*(X) = IT + XI1 (11)
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The characteristic equation is a polynomial in X. If T is r x r then the highest
power of X in *(X) is X'.

O(X) = ao + aiX +... + a,_iXr- + ax" (12)

where the coefficients are from the binary number field (0, 1} and, in particular,
a = 1. Since T must satisfy this equation,

Tr = a0I + ajT +... + aG-,Tr-1 (13)

Every power of T can be represented as a polynomial in T with maximum
degree r- 1.

Tk = b0I + biT +... + br-iTr- 1  (14)

where the coefficients are binary numbers. There at most 2r- 1 distinct powers
of T (excluding T = 0), so that the state sequence has a maximum length of
2'-1 before repeating. This maximum length will be achieved for linear fininte-
state machines in which the characteristic equation is a primitive polynomial
of degree r.

A maximum-length LFS machine of order r can be constructed by building
a linear feedback shift register with feedback connections determined by the
coefficients of a primitive polynomial t(X) of degree r. There are at least
two primitive polynomials of every degree, so this is always possible. A good
discussion of the shift-register implementation of finite-state machines and their
properties is contained in Peterson and Weldon [5].

2.3 Error Effects

The independent agent "expects" a checkword sequence {z,}. Its design is
such that it will fail to provide system energy if this sequence is incorrect. In
the current implementation each z, is a thirty-two bit binary number that is
generated by the operation of the LFS machines as described above. To find
the probability that the independent agent will fail to shut the system down ...

in the event of a computational error, we need to compute the probability of
getting the proper value of zi with an erroneous evaluation.

The effect of an individual error depends upon both its value and the time of
occurrence. The effects of multiple errors combine by superposition, as shown
by (10). A combination of errors will be invisible only if the effects sum to 0.
This can occur only when there are two or more errors because no single error
can produce the 0 state.

As an example, let us look at the requirements of a pair of errors, say at
times t - j and t = k with k > j, such that their combined effect is 0 at some
later time, say t = n. The requirement is

u UT"- + ueUT"-k =0 (15)

ueU = u UTJ j (16)

Moa
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The right-hand side can be any nonzero pattern. In the current system in
which r = 32, there are 2" -1 - 232 -1 -= 4,294,967,295 s 4.3.- 10 distinct
patterns. The left-hand side must match the pattern that is chosen by the
right-hand side. Starting at a random initial state, produced for instance by
a random error pattern combining with the shift-register contents at time j,
the system is equally likely to be in any of the nonzero states k - j steps later.
The probability of the error at time k just canceling out the random pattern
caused by the error at time j is one in 21 - 1, which can be made as small as
desired by the choice of r. In the current implementation this probability is
about 2.33- 10-10.

An equivalent analysis applies to the case of more than two errors. The
chance that several errors will combine to produce a 0 result is approximately
2-rY.

Recall that the system uses two channels for diversity in error checking.
The probability that both channels produce a 0 response to two or more errors
is the product of the individual probabilities, or about 5.43- 10-20. In a system
in which there is an independent error opportunity about once every 100 mil-
liseconds, the expected time between such occurrences (MBTUE) is 5.8. 1010
years.

3 Applications

This algorithm has been applied in the Vital Processor Interlocking (VPI),
the MicrocabmaticI and the Apparato Statico con Calcolatore Vitale (ASCV2)
products. The VPI and ASCV products are used to control signals and switches
at interlockings (locations were multiple tracks are connected together to allow
various train movements) and the Microcabmatic product is used on board
vehicles (locomotives and transit vehicles) to insure safe speed enforcement.
These products have been applied in more than 350 installations and to date
have achieved over 3,000,000 hours of safe operation. There has not been a
failure of the algorithm to insure safe operation. Furthermore, the systems
have proven to be reliable and have not suffered from unnecessary shut downs.
For example, the average VPI system has demonstrated a mean time between
system shutdowns (assuming no systems utilize backup or standby redundancy)
of over 50,000 hours due to hardware failures including those in the input and
output interface circuitry.

The algorithm has been reviewed and analyzed by rail and/or transit au-
thorities in at least 6 different countries, and all have found it to be acceptable
for their use. Since the algorithm is not application dependent, this equipment
has found use in other rail applications were boolean equations are used, in-
cluding speed limit selection control and highway crossing gate control. Also,
since the algorithm is application independent it is easily used by countries
whose signalling philosophies differ from that used in the USA.

1 VPI and Microcabmatic are registered trademarks of GRS Corporation.
2 ASCV is a registered trademark of SASIB Signalamento Ferroviorio.
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The power of the microprocessor has allowed these products to include
embedded diagnostics. These diagnostics have been instrumental in system
maintenance and in reducing the time needed to restore a system after a fail-
ure. A computer aided applications package has also been developed for these
products which allows the application process to be partially automated and
allows the systems to be simulated before they are installed. The computer
applications package and simulator in conjunction with the flexibility of this
scheme has been instrumental in applications which progress through multiple
stages as a result of changing track work.

4 Conclusion

The NISAL algorithm has proven to be both robust and flexible. It has provided
a system which is analyzable and allows the maximum probability of an unsafe
event to be calculated independent of the hardware and the application. It
is easily applied and adapted to the different signalling philosophies found in
different countries. It does not require a proof that the software is error free. Its
acceptance worldwide has allowed the power and advantages of microprocessors
to be applied to the rail industry while maintaining high safety standards.
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Abstract

The PESANTE' project intends to arrive at an integral approach
towards PES2 assessment. Elicitation of knowledge on relations
between PES characteristic and functioning is the first step. Here
categorical analysis plays a major role. The results of this phase
will be used to tune a Bayesian inference network. This network
is able to assess PESs given an amount of information on the
PES characteristics. The techniques chosen are able to cope with
heterogeneous and missing data. PESANTE will cover software
and hardware aspects, as well as the human factor. Also, it can
indicate the value of information to be procured next; this makes
sure a balanced assessment is being made.

1 PES = Programmable Electronic System

2 PESANTE = Programmable Electronic System ANalysis TEchnique
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1 Introduction

Before installing safety critical programmable electronic systems in industry, one
wants to assess the dependability aspects of the system. This is done with the
purpose of
- Choosing the right PES in the right application; balance of costs and
performance.
- Balancing the overall dependability of a total system; the dependability
requirements for the PES are related to those of the total system.
- Numerical assessment of plant dependability performance.

The problem with the available techniques is that they tend to be unbalanced, not
using as much data as would be possible, and arriving at unusable measures.
- They are unbalanced. Most techniques only address hardware performance.
Some address software performance and only few address the human factor.
Experience has shown that all three of these are important to arrive at dependable
systems. Almost no technique addresses the combination of the three of them.
- They ignore information. Each technique only includes data that fits in its
mathematical framework. From these, most techniques available at the moment
disregard much information. More specific: they only include numerical data on
only a few aspects of the system's characteristics.
- They result in unusable measures. Unusability of measures happens in two ways:
too much information on a small part of a system (e.g. MIL-HDBK-217
calculation of hardware failure rate [1]), or information that is hard to handle (e.g.
the number of remaining bugs in a program).

TNO has defined the PESANTE [2] project, in cooperation with SINTEF and
Norsk Hydro, Dow Europe, and Glasgow Caledonian University's Software
Metrics Laboratory. The aim of the PESANTE is to measure dependability
characteristics of programmable electronic systems in process industry. The
method is to be used for highly rclable PESs in safety applications resulting in a
balanced, complete and usable assessment.

2 Baseline of the Project

Dependability assessment of safety related systems is getting more crucial every
day. More and more, PESs control and guard critical processes. Nowadays the
insight has grown that dependability of electronics depends on three factors:
- Hardware.
- Software.
- Human factor.
All three of these have to be examined in order to arrive at a sound assessment
of a system. The following sections shortly describe the state of the art in these
fields relevant to PESANTE.
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2.1 Hardware Dependability

As all dependability engineering, hardware dependability assessment can be done
qualitatively and quantitatively. The first methods used were essentially qualitative
(dependability by design). Then the quantitative approach emerged, amongst
others initiated by the US. Defence organizations: the MIL-HDBK-217 [1]. This
approach has gained much popularity and is used for almost all PESs at the
moment. In spite of its popularity, much has been said against the applicability of
the handbook [3]. By this, and the notion that safety has to be an integral part of
the dcsign in highly dependable systems (making things impossible is better than
making them very improbable) the qualitative approach gains field again.

2.2 Software Dependability

In software dependability engineering, the most widely applied methods are
quantitative. Most methods use data on debugging and failure times for estimating
failure rates [4]. There is much discussion about the validity of the approach and
its correlation to reality. Case studies have shown good results, but the question
remains whether the methods give valuable clues for the individual case.

2.3 The Human Factor

The notion that human dependability is a major factor in the functioning of all
systems is rapidly gaining field. Human factors play a role in all stages of a design:
specification, implementation, debugging, maintenance, upgrading, and last but not
least use. The emphasis on quality assurance at all stages is one of the examples
of the effects of this notion. The other way around, the incorporation of data on
the human factor in an assessment of a system is in development. Numerous
publications [51 discuss the matter and try to find solutions to the problem. The
results are promising. It has become clear that without assessment of the human
factor dependability estimation of a system is incomplete.

2.4 Integral Approach Towards Dependability Assessment

All three of the aspects mentioned above play a role in dependability estimation
of industrial electronics. This poses the following problems to the assessor:
- Finding the right balance in assessment of the three aspects.
- Combining findings on the three aspects into one assessment. The fmdings may
be of quite different nature. Also some information on an aspect may be lacking.
Two examples may clarify this: sometimes information has to be discarded
because the tool used cannot handle the kind of information, also sometimes
analysis methods demand data for arriving at an answer, even if the data is not
available. Essentially, most information one can gather on a system is
heterogeneous: having different units, scales, and importance. This poses hard
demands on the assessor and also on his tools.
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- Assessing the value of information. If a certain amount of information on a
system is available and one is not yet satisfied with the results: what information
should be gathered next? What information is most valuable to the assessor in
order to improve his ordeal. E.g. if one has a lot of information on hardware
dependability, extra information on hardware dependability might not be very
valuable as opposed to information on the human factor. How can an assessor
choose which information he should gather?

This tendency to try to balance can be found everywhere now. It is a type of
thinking towards a goal, rather than thinking from tools [6]. The goal is a valid
assessment of safety performance of a system. PESANTE integrates some of the
suggested approaches and is described in the following paragraphs. Based on the
insights gained in the course of the project tools will be developed.

3 Technical Description

The PESANTE project is a combination of mathematical and knowledge
elicitation techniques. The project is a synthesis of approaches from various
disciplines: traditional software, hardware and human dependability analysis,
categorical analysis, elicitation and Bayesian inference techniques.

To implement the technique, first knowledge elicitation will take place, using
proven techniques as the Delphi method. This will concern both objective and
subjective information on systems. The information originates from users and all
others familiar with the performance of the PESs. These people are asked
questions illuminating the quantities under study from different viewpoints. The
idea is that these people all have information, but cannot combine this data into
the metrics needed. PESANTE will systematically help them to do that.

Also input to the categorical analysis are the results of standard assessment
techniques as MIL-HDBK-217 calculations, software dependability measures as
MTTF estimations, and human factor assessment techniques. The technique
proposed is to be a step beyond these methods: it is to combine all results into
one assessment.

3.1 Categorical Analysis

The technique to analyze the information is a categorical analysis [7]. This will
quantitatively reveal correlations between (combinations of) characteristics. If by
example a certain test strategy is necessary to realize a certain maintainability, this
correlation will show up. Later these relations will be used the other way around:
to asses the system from its characteristics [8,9].

In PESANTE categorical analysis will be used to elicit relations between
heterogeneous data and dependability aspects. Categorical analysis is available
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now for some time, and mainly used in psychology and sociology, where complex
relationships are common (as well as the need to unravel them). The technique
is used to reveal those relationships.

Characteristic for categorical analysis is its ability to cope with heterogeneous and
m s data. This enables PESANTE to include all sorts of data available on
PESs in safety applications.

3.2 Bayes' Reasoning

For assessment the relations between PES characteristics and dependability
aspects as found using categorical analysis will be implemented using Bayes'
reasoning [10]. This tool will use Bayes' reasoning to conclude on dependability
aspects based on given input. This input does not need to be complete, the tool
will be able to cope with missing data. As categorical analysis the technique used
is not new. It is used with success in other applications like fault diagnosis. Only
few attempts for using artificial intelligence in the field of dependability
engineering have been done until now. The advantage of using Bayes' reasoning
are:
- It can cope with missing data.
- It can give estimations of the value of data.
- It can give an impression of the reasoning behind a result: how did the system
come to this conclusion.

3.3 Combination of Categorical Analysis and Bayes' Reasoning

In short, the techniques mentioned above will be combined in PESANTE as
follows.

Procurement of information on PES functioning will be done using techniques
readily available as the Delphi method and other expert opinion collection
techniques.

Categorical analysis will be used to elicit relations between heterogeneous data
and dependability aspects.

After elicitation of the relations, a model based on Bayes' reasoning will be tuned
accordingly. The resulting tool will assess future PESs.
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4 Conclusions

The PESANTE project will deliver an integral approach to dependability
assessment of Programmable Electronic Systems. Valuable are the following
characteristics:
- It will be able to combine heterogeneous data on the PES under consideration
in order to arrive at a sound assessment.
- It will be able to determine the value of data: what data is most valuable to
arrive at a better assessment. This makes sure that a balanced assessment is being
made.
- It will be able to cope with missing data. In most cases, data on a PES are
incomplete. Most methods demand input, available or not. PESANTE will base
the assessment on the data available.
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Abstract

This paper firstly analyses the decision making of a supplier in
applying for certification. The process of safety assessment as seen
from the supplier side is described, in particular the experience of
being assessed by TUV to Safety Requirements Class 5/6 of DIN V
VDE 0801.

By describing in detail the various phases of the assessment it is
hoped that by this paper an aid to other would be applicants is given
in easing their assessment path. The paper firstly reviews other
national and international standards and schemes and looks forward
to the possibility of a unified ISO standard and assessment procedure.

In conclusion the paper briefly analyses the cost/benefit of assessment
and certification.

1. Introduction ,'

As a supplier of safety critical systems to both the Nuclear and Petrochemical
industry, August Systems begun in early 1990 to review the case for independent
safety certification. From this review it was decided to proceed with safety
certification for a Triple Modular Redundant Software Implemented Fault Tolerant
Safety System. This paper analyses the reasons for this decision and seeks to
provide aid and guidance to other suppliers in the path of safety certification.

The path of independent safety certification is a costly and time consuming process
and no vendor should set out on this path without the resolve and financial
resources to see the process through to the end.
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2. Assessor and Certification Choice

Worldwide there are a small number of authorities that will provide safety
certification to various national and application directed standard. Currently there
are no international standards for safety systems to be assessed too and therefore the
first decision that any vendor must make relates to the choice of assessor and the
choice of standard to be assessed against.

The market to which the relevant safety system is targeted will often influence the
choice of assessor and standard. For nuclear installation each major country has its
own standards and regulatory organisation, eg. the National Nuclear Inspectorate
(NNI) in the UK. This reliance on application and national standards limits the
commercial viability of a more generalised safety systems approval.

Other industrial safety conscience markets such as Petrochemicals rely on standards
of codes and practice such as the PES 1 and 2 guidelines issued by the Health and
Safety Executive (HSE) of the UK and the Engineering Equipment and Materials
Users Association (EEMUA) guidelines, however more recently for programmable
systems an acceptance of TUV Certification to Class 5 and 6 has been considered
appropriate by a number of major operators in this field.

Industry specific standards and certifying authorities such as the Federal Aviation
Authority (FAA) in the USA, and the Civil Aviation Authority (CAA) in the UK,
have obtained international acceptance on a wide scale for flight safety. To a lessor
extend the national certification authorities for railway signalling have also achieved
some international recognition.

As it can be seen the choice is wide and is normally governed by a combination of
both the targeted industry and the national authority. In the international market of
petrochemicals August Systems chose TUV as the certifying authority and DIN V
VDE 0801 as the standard for safety systems. The choice was governed by a
combination of major customer acceptance and international acceptability. The class
of certification 5/6 was chosen to match the market for the majority of safety
systems for the petrochemical market. Higher classification systems such as 7/8
may be readily obtained by a combination of diverse systems in highly critical plant
areas (the references provide more information on high Integrity Protection System
- HIPS where class 7/8 safety is required).

The DIN V VDE 0801 specification provides a risk graph aid to the user to
determine the class of safety for the application, this shown in Figure 1.
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3. Assessment to DIN V VDE 0801

The assessment covers three basic phases which are:

a) The Design Analysis
b) The Hardware and Software Inspection and Testing
c) The Certification

Each of the three phases has its own pre-requisite and imposes different work loads
on both the vendor and the assessor.

3.1 The Design Analysis

The design analysis phase for DIN V VDE 0801 is called the concept review and
consists of three distinct parts; requirements class selection, documentation
inspection and analysis of the safety concepts of the system.
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3.1.1 Requirement Class Selection

By holding informal reviews with the vendor, basically enabling the TUV staff to
understand the general concepts of the system that is being offered for certification,
the suitable certification class is selected and agreed. From this point onwards all
measurements and results will be interpieted in relation to the select.,d requirements
class. The levels of the efficiency of the measures taken for safety and the types
of failure caused are simply defined by Table 1 which is given in DIN V VDE
0801.

T"bl of Required Efficiency of Measures against failures
Depending on the Requiremnent Classes (according to DIN V VDE 0801)

___________nwf _______ hmftsaS 1 2 3 4 ý1 5 F6-T 1 8

of failu of failure of failurs f__ u_
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table 1 ,.r-

3.1.2 Documentation Inspection

For a system to be capable of being accredited with a safety classification it must
be thoroughly and accurately documented. The certifying authority uses this phase
to both validate the documentation and to give a further insight into the operation
of the submitted system.

For the vendor this period will almost certainly result in documentation corrections
being instigated and if the system is not thoroughly documented, additional

documents will need to be produced to provide a complete documentation set.

The results of the section will confirm or otherwise that the system is capable of
proceeding to the next phase and being accredited to the appropriate class.

accuw~dmi
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3.1.3 Analysis of Safety Concepts

The vendor will be required to submit a Safety Concepts Review Document that
completely describes all of the safety aspects and concepts of the submitted system.
This document will almost certainly not exist within the vendor organisation,
however the information to produ,:e this document would normally be readily
available from the vendors standard documentation packages.

This document plus all of the standard software and hardware documentation will
allow the certifying authority to produce a system level failure mode effects analysis
and will also provide an indication of the effectiveness of the measures taken to
prevent system failure or fail to danger.

When the system has successfully passed through this first phase the indepth testing,
inspection and validation can proceed.

3.2 Hardware and Software Inspection and Testing

This phase of the certification is probably the most intense for the certifying
authority, it consists of Hardware Inspection and Validation, Software Inspection
and Validation, Systems Integration and Safety Concepts Validation.

3.2.1 Hardware Inspection

The certifying authority now completes a detailed inspection of every hardware
assembly. This inspection includes track thickness and track gaps on printed circuit
boards as well as a complete analysis from documentation to final product.

Detailed failure mode effects analysis are carried out on all circuits where safety or
fault tolerance are seen to be critical, this analysis encompasses all critical
component tolerance analysis using CAE tools. ,.

The Mean Time Between Failure calculation provided by the vendor are checked
and finally the system is type tested to the vendor specification. This final exercise
is normally completed shortly before certification as by experience TUV have found
that it is better to ensure full certification is achievable before type testing takes
place.

3.22 Software Inspection

It is at this stage that any short comings in the design approach of the software to
be accredited will become evident. For the rigorous designers, there will be little
to do but perhaps provide additional structure guide documentation.
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If however the source code and structures are not well documented then there will
be a significant amount of back documentation to be completed before the assessing
authority can proceed. It must be remembered that the assessors will have little or
no background knowledge about the design to be assessed.

The process of assessment indicates a thorough inspection of the documentation,
data structures and data flows against quality criteria, programming codes of
practice and consistency against the specification.

The software is analysed for measures taken to guard against faults and errors, such
techniques as defensive programming, on-line software test routines and error traps
are confirmed to be present or otherwise, and this enables TUV to determine the
category that the software design belongs to.

The software is also subjected to a computer aided white-box test which provides
analysis of coverage, run-time, data range and control flow.

3.23 Integration and System Test

By this time in the evaluation the authority will now have an intimate knowledge
of the detailed workings of the hardware and software system under review. This
will have been obtained not just by review of the thorough documentation but also
by a series of meetings held with the vendors engineers. This acquired knowledge
plus the experience of the examiners enables the certification authority to complete
a large number of fault injection tests both on hardware and software.

The purpose of fault injections is to confirm the theory of operation for fault
detection, time of fault detection, fault tolerance, fail safety and reparability.
Injected faults include simulated hardware failures, actual software corruption and
simulated fail to danger scenarios are carried out and each result logged and
analysed.

4. Application Specific Criteria and Final Report

With the results of the test complete it is now possible for the evaluating authority
to generate a final report which defines the process types that can be protected (eg.
processors that have fail safe states), the main time that faults may be in the system
undetected and any special requirements of configuration.
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5. Accreditation Standards

Currently there are no internationally accepted standards to which accreditation can
be achieved. In the authors opinion it will be several years before a fully accepted
international standard is available. Two national groups and one international group
have been working towards producing an acceptable standard and the following
provides a review of the current status of those standards.

5.1 Instrument Society of America ISA SP84

The ISA SP84 group is a process industry group that has been working on
generating standards for safety control applications in the process industries
particularly for programmable systems. The committee consists primarily of users
and a few selected ve'ndors and the standards are in advanced state of production
with perhaps the - xception of software criteria. Because of its advanced status it
is possible that these standards will be submitted for international recognition in the
coming two years, they are however currently limited to process applications.

5.2 DIN V VDE 0801

This specification is a German National standard which is not industry specific.
The standard has been evolving over the last decade and its current status gives it
acceptance both in germany and by certain international companies. I would expect
the German standard groups to push for DIN V VDE 0801 to be accepted as the
international standard for safety accreditation. The standard certainly does provide
the basic coverage that an international standard will need, however in the authors
opinion it does require further development, specifically in the area of safety
metrics.

5.3 EEC 65A Working Groups 9 and 10

These European/International working groups have been operating for a number of
years in an attempt to produce an acceptable ISO standard. The two working
groups have been contributing to different aspects of safety system WG1O provide
a generic system approach and WG9 concentrates on safety software.

It is hoped by the author that these standards will eventually become accepted by
ISO although my expectation is that at least 2-3 years of further work is required
and probably a degree of amalgamation with both the SP84 and the VDE 0801
standard are required.
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6. Conclusion

With no one international standard to accredit against, the drive to invest in
accreditation by a safety system supplier will often be governed by his customers.
If a sufficient number of customers continue to push for accreditation by a
recognised authority then the supplier will need to make a commercial decision as
to whether the investment in accreditation is necessary.

The cost of accreditation is of course dependent on the size and complexity of the
equipment submitted, but will almost certainly fall within the range of $50,000 -
$250,000.

Additionally there is the ongoing cost to ensure that modifications and updates are
re-accredited.

From the suppliers viewpoint one internationally accepted standard with
accreditation authorities in all of the major industrial countries would be the
preferred outcome. Until this is achieved we will have to continue to make
commercial decisions on when and where accreditation is achieved.
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1 Introduction

"There is an increasing use of computing in safety related applications and ensuring
that such systems ar conceive designed and produced wih appropriate attention to
safety is not easy. The process of identifying undesirable events and their
consmquen is known as hazard analysis. Ckrying out a bawd analysis at varing
sage during the t process is now being mandated in emerging standards
produced by the itional Electrotcnica Commission (EC) [1] and the UJ..
Mfinistry of Defence [2].

With computer based systems ther is th particular problem that desi faults
tend to domi random hardwai faults and so identifying potential hazards early in
the desi process is crnial. Ther are well established methods for carrying out
hazad analysis in many domains of engineering such as petno-chemical but it is not
clear that such methods ae readily applicable to computing based systems. Further,
tder is little advice available to assist with hazard analyses using computer
technology.

To address the above problem we have modified the Hazard And OPerability
(HAZOP) technique [31 and used it successfully in the computing domain. Our
evolution of the HAZOP technique has taken place over a number of years and most
ahave been Commercial in Confidence. However, a medical imaging
applcation is being studied as a collaborative research project and serves as an
WV rg imecase study.

The remainder of this paper explains our concluion that a modified HAZOP
is ma effective way to carry out hazard analysis on computer based systems. We find
that

" mThe HAZOP method is well established and fits well into overall safety

"* The nethod cma be extended to fth computer soflwm field
"* The experience to date is that the approach is powerful and we illustrnat this

with the medical case study.

l.hem custady repomd here is pert of a collaborative project between The Centre for
Softwm Enghleeru Limited, Conbridge Consuluite Limited d The Hwr -ma etics
Unit of Thw Modl Research Council
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To put the results in contex the enext section gives a description of the expe-imental
medical system Subsequent sections deal with our efforts to develop a modified
HAZOP and a case study of the results obtained through its application to the- medica system.

2 The Medical Diagnostics Application

There ar many laboratories worldwide which carry out cervical screening by expert
manual inspection of slides prepared from smear samples. The purpose of screening
is to recognise the presence of abnormal cells in a sample which may contain few
such cells, and is likely to contain possibly confusing other matter. Usually, the
review is manual and includes an assessment of the degree of abnormality, leading to
diagnosis and treamente For screening of healthy patients on a regular basis, there
are likely to be few abnormal cells but for diagnostic screening of a sick patient,
abnormal cells will be expected.

The U.L Medical Research Council Human Genetics Unit in Edinburgh
(HIOU) has developed over a number of years a semi-automated screening system for
cervical smears [4]. The basis of the automated system is the computer analysis of
a slide prepared from the smear sample. The first version of the system relied on
custom nhadware to capture and process images and the HGU we now in the process
of r-eogineering the system to run on a modem computing platform without the
se of custom hardware. The collaborative project of which the work repored here

is pat involves the re-implementation of part of the new system currently under
development.

The system relies on efficient imag processing and classification algorithms
to find the abnormal cells. An initial search at high speed is carried out at low
resolution to identify suspicious objects (an object is something that appears to the
software to have cell-like characteristics but may not in fact be a cell). A second
pass is then done at higher resolution so that a mom detailed analysis can filter and
rank the objects. The kpanking objects ae classified and a decision made to class
them as normal, ask for a skilled human review, or pass for a full conventional
review.

Outside the core imaging system, there are various preparatory and post-
analysis processes to be taken into consideration. The former include administrative
tasks to handle samples and accompanying paper-work sent from General
Practitioners and clinical agencies. This is then followed by slide preparation and
the transfer of slides to the automated imaging system. Configuration may then be
necessary to initialise certain batch processing control parameters before the
automated process itself can be started. Once this has been completed, there follows
a certain amount of tidying-up before results are passed for diagnostic review,
signing out or some form of quality control check. Results of the analysis must
finally be returned to the clinic which supplied the sample and the analyzed slide
placed in a long sum archive.

The core image processing part of this application forms the case study for
our application of HAZOP to a software based system.
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3 HAZOP Studies are an Effective Part of Safety
Management

This sectio describes the process of ensuring that safety is considefe during all
phaes of the life of a system, the safety lifecycle. It then gives an overview of ow
of do estblished ume for identifying hazards, the HAZOP, followed by some of

e dvantages of &C meod.

3.1 The Safety Lifecyde

In a number of established industries, particulady petrochemical, the possibility of
failures having an adverse impact on safety has been recognised for many years.
However, it was not until a number of accidents and near accidents had take place
that it was recognised that a systematic approach to ft•hle na t of safety was
required. The approach taken is independent of the industry. To clarify the
following, two defnitims are given, both taken from Ref [11:

A hazard is a physical situation with a potential for human injury.
Rik is the combination of the frequency, or probability, and the consequence of a
-weied hazaous evem.

The basic stepa in the overall safety lifecycle are:

". System definition generating an overall description of the system under review
"* Hazard analysis to identify the potential for hazadous events
"* Risk analysis to judge the safety risk of the defined system. This quatifies

fte potential for hazardous evems and evaluates teir c
"* Judgement of the acceptaWity of the risk
"* Activities, if necessary to reduce the risk to an acceptable level This might

be by modifying the architecture of the system, including extra measures to
avoid or contain safety failures, or ensuring that the system is built to
standards that are apprpri to the level of risk.

" Implememing the system to the required standards, followed by effective
-pdo and maintence

In recent years there has been a huge growth in the use of computers and, as we are
all aware, all computer systems we liable to contain design mistakes. The fact of
ft fallibility of computer systems when used in safety critical situations is now

being addressed formally in standas worL Two new standards have been drafted.
one from the In e tional Electrotechnical Commission addresses functional safety
of computer based systems [1] and the other from the U.. Ministry of Defence,

---eue- hazard analysis for computer based systems [2].
Both te standards use the above safety lifecycle and stress the importance of

caying out hazard analysis. The tditional industrie have developed a numbe of
structured methods to help enmure that the hazard analysis is complete and tomugh,
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much meods include 'what if" analysis, failure modes and effects analysis (FMEA),
and HAZOP. The next section introduces one of the most effective hazard analysis
methods, HAZOP.

3.2 The Traditional HAZOP

The full name of HAZOP is Hazard and Operability, and this gives pointers to the
two fets of its purpose. The HAZOP ensures both that features that could lead to
undesirable outcomes (ie hazards) are avoided and that necessary features an
inorporated into the design for safe operation. The method was developed in the
UJL by ICI in the late 1960's and is well established in the petro-chemical sector.
A reference for its use in that industry is given in [3].

In these industries, the plant design is normally described by piping and
instrumentation diagrams (P&IDs). The HAZOP study is carried out by a team of
knowledgeable engineers who carry out a systematic examination of the design.
They postulate, for each element of the system design in the P&IDs, deviations
from the normal operating mode and then assess the consequences of those
deviations with respect to any safety or operability pmblems.

For each deviation, the team asks 'can it happen?' and, if it can, is this likely
to lead to a hazard. The team will take into consideration any mitigating features,
such as control valves, alarms etc, which might control the hazard. To formalise
the process, a series of guidewords am used to define particular deviations and these
am applied to each relevant parameter for each process componenL

Thus, for fluid flowing in a pipe, relevant parameters might be flow,
pressure, temperature and deviations examined would include high, low, no,
reverse, as well as. In theory, each guideword should be applied to each relevant
parameter for each part of the process description. In practice, this is very time- ,t
consuming, and an experienced HAZOP leader will use judgement to control the
correct detail of questioning in each area.

The results can be presented in a number of ways and we have found a
software package developed by our parent company, Arthur D Little, running on a
personal computer to be effective [5]. Results am presented under the following

Item number - a simple count of items logged from the beginning of the HAZOP
Equipment Item - a description of the area of plant for which a deviation has
been found
Parameter - such as temperature, pressure, flow etc.
Guldeword for Deviation - such as high, low etc.
Cause - the circumstances that could give rise to the deviation
Comaequence - the effect on the plant that the deviation might lead to
IndIcation/Protection - any feature that will either identify the deviation or
mitigate it's effects (eg an alarm signal or a pressure relief valve).
QuestionlRecommendation - questions arise from items considered a potential
hazard which cannot be resolved by the meeting. Recommdation am generally
for changes to the design or particular actions to be take during operton.
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Answers/Comments - This allows the laer" insertion of answers to questions
raisd or motes which the team consider relevant to the design but are not questions
or Pc a -uncd -

The HAZOP team is normally small, four to eight people. comprising a leader, a
team secretaty, people who understand the design intent. people who we experienced
in the operation of similar plant and specific technical experts as necessary.

3.3 Advantages of HAZOP

There are three main advantages of the HAZOP approach to doing hazard analysis: it
is carried out by a team; it deals with the design in a systematic top-down manner,
and it is capable of being applied during all phases of a system lifecycle.

The team approach allows a variety of expertise and viewpoints to be applied
to the system. Our experience is that many problems are caused by interactions
between parts of the system and by differing nderandings of designers and
operators. The team approach allows such issues to be explored and there is less
impact to a mistake by one team member. Having key personnel on the team
means that any problem areas are brought immediately to their attention.

Dealing with the system in a top-down manner allows concentration on the
key issues arising from the potential hazards and allows system-wide implications to
be assessed. Having a clear view of the whole system allows the team to explore
non-obvious interactions between parts of the system. This is in contrast with
bottom-up approaches such as FMEA which must analyse every component to a
similar level of detail which is time-consuming and eror prone,. We have found that
the HAZOP is useful in identifying which are the most critical areas to concentrate
on in any later FMEA.

The approach may be used during all phases of the life of a system. We have
used it successully both at the conceptual design stage and for safety assessment on
completed systems.

4 HAZOP Has Been Modified

The positive experience of Arthur D Little in using HAZOP made it their technique
of choice for hazard analysis in the petro-chemical industry. In recent years they
have worked with their subsidiary company, Cambridge Consultants, to explore
whether the HAZOP method could be extended to other domains, particularly those
where electronics and computers were involved. It became clear that work was
needed in two different areas first to find appropriate epresentations and, second, to
aee what were an appropriate set of pammete and deviation guidwords.

4.1 An Effective Representation Method is Needed

With computer based systems there is not, obviously, a P&ID to work from. For
elctoia designs there ae clear parallels with block diagrams and circuit diagrams
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and there is much uniformity of representation. Transfer of the approach was thus
straightforward. This was not the case with software. There are many
representatonal methods which involve diagrams and some, using mathematics,
which have no pictorial epresetation. We have found that the HAZOP approach is
tractable with a variety of pictorial methods but that the dataflow representation of
structured design is the most naturl to work with.

With our exemplar diagnostic image processitg system, utle in the way of
design documentaion was available and so we worked with the system designers to
build a dataflow representation of the system using a CASE tool called Software
through Pictures (6]. Figure I shows the first level of decomposition from the top
level context diagram.

20 bkuh slides dd

Figure 1: Cervical Screening System

The asterisk in process 2 indicates that a lower level decomposition has been
geneated. The three processes show the activities of:

* Slide preparation - preparing slides from smear samples
* Slide screening -de computer based imaging and diagnostic process
* Full review - manual expert checking of slides recognised as

suspicious by the computer system
Figure 2 shows a simplified version of part of a lower level process, the

process of carrying out a scan of the slide at low resolution. One of the sub
processes, Bright Fuied, is used below to illustrate the HAZOP method so its
function will be described here. Four or five frames are captured by using a
mcroscope, digital camera and a special framestore supporting direct memory access
of reduced scale images (typically every 5th pixel). The process performs a logical
OR operation on the captured frames to determine maximum light intensity on a
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phixl-by-pbixe basis. Tis data can then be used to correc object images for opdcal
desty (that is, making them invariant to lamp brightness and variation in field

Remt

Figure 2:W Pathfroweeostoholdc 8

the ~ ~ igr mai advntge of th aaLow approach wearhav fonSvra ubro

prjcsis tha the design is readily undersandable by all interested parties, even
tonwishw mny computing background.

4.2 New Guidewords Have Been Derived

Since the software and domains differ sgicaty from Petro-
dIIeMickawieqeering, we found tho the standard HAZOP guidewurds did not provide
arichenough set. Ovea anombof projecis [71 we have evolved aset which is

gewflyapplicable to software baoed sysems and exam~ples of thes are shown in
Tabl 1 below. ibe full vocabulary of guidewords was larger and included words
tdot wers only used on a few occasions. Thesea1 roseP thvog the complex mix of

Wch~ in Me P, U ýs ep *eowmm imaging system and the need to expresas a partiula
devatin.The sat is evolving as our experience increases and we believe that

hu=Vanuis mightd viEifwe diME-entiaed between diffarew data types.
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- wrong -pficto

wrong algondunic

daturd. too high
too low

wrog handshake

timing (Of actions) too Cadly
toolat.
too slow
too fant
out of sequemic

Taze 1: Paamenesr and their Deviation Guidewards

5 The HAZOP Process Worked Well in Practice

5.1 Results

The HAZOP was carre owt by a tem of four people including an experieced
edrmid one of do. desiner ofdhe re-nginerd diagom i sysem. The HAZ"

was of doe fuill compuwe based imag processg systm and some 100 itms were
nosd *Min the wO&k

The EA"O was appl ieIn a top-dow manne so dot eah proces was
Oim in doe nutei order in which it occurrd in the deataflw deopstoLfz&S
deviatios of the input dataflows were expknd, foflowed by emntOf dof h

prc.itse which naftwaly define the possble deviatio and thimoseune
forte parocs outputs Many dat itms were used as input to mor than one

prcssad of cours they only needed to be addressed in deal once duing the
H *OP Thus as mbc new level was examined the dat passed down from a

hihrlevel was nWke and only reviwed briefly to check tha possible cwauption
or fra nadosmain had not been overlooked. Some geneic conclusons from the

w tswill be given and then some of the specific iems from the proces Cfapr
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Bright Field described above.
The generic conclusions may be divided into three themes Frst. efficiency

led pins in processing speed have to be balanced agaist the potential for hazards
due to incomplete sampling. To achieve the benefits of automati screening the
system throughput must be high and the necessary use of complex image processing
algorthms and a series of filters means that not all a sample may be scanned.

Second, recognition of abnormal cells can ar from hardware faults and
currnt software imp practice. Hazards may aise through data corruption
either leading to overlooking of abnormal cells or through recognition of normal
cells as abnoral. The ml approach to date has concentate on algorithm
remerch using the most convenient tools and methods and has given less attention
to achieving high levels of safety integrity.

Thirdly, key data items for set-up and operaton must maintain their integrity.
In particular, processing histories ae kept for a number of days on a rolling basis
and classifier learning data is used by key algorithms: these and similar data must
maintain their integrity so that consistent system operation and corre tracking of
patient details ar ensured.

The process Bright Field shown in Fig 2 is used to illustrate the HAZOP.

Recommendation S9 Bright field high cell density could lead to incorrect OD
calculation, effect could be a 'blind spot'. Carry out sensibility check.
Question 60 Bright field drift of lamp intensity could lead to missed objects.
How can this be chckwd foi?
Question 61 Bright field Depends on light maxima which could be too high if
slide sample acts as lens, forming ring on image. Can other algorithms be used?
Question 62 Bright field if value too high, too low or randomly incorrect,
subseqn OD crecte ages wil be corrupted. Can thisbe checked for?

It should be noted that this was a HAZOP of an experimental system,
developed to show feasibility and it is not surprising that we found the system
lacking in a number of areas. The value for the design t•um is that they believe
team members are now well placed to address hazard concerns in order to mitigate
areas of potential risk.

6 The Approach Has Advantages and Limitations

The advantages of using a HAZOP described in Section 3.3 above have been found
to be independent of the application domain and of the technologies involved. For
the computing domain described in this paper the application of the method was
novel to the HGU personnel involved. The combination of the dataflow
representation and the systematic approach to examining deviations that could lead
to hazards worked effectively. Once the team became used to the method (our
experience on this and other projects is that familiarisation takes about half a day)
prduivit was high and the full HAZOP of the system took only a few days.
This high productivity and early focusing on important issues is, we believe, a
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mq* advantage of the HAZOP as contrasted with bottom-up approaches.
There are, however, limitations to the approach. In the process industries

gfidewords for deviations from design intent ar well established and application is
reasonably straightforward. With software based systems we have found that
application is less easy :
0 The expertise of the HAZOP leader is crucial in focusing the discussion on

poueal hazards and not to cpoi 'interesting' areas.
0 Slavish adherence to the guidewords is not sufficient. We have found that

significant flexibility and multi-disciplinary design experiece by the team is
neessary to explore unusual interactions.

0 Independent technical experts, experienced in safety critical computer system
design awe necessary to pin full beneft
"Thus we have found that the HAZOP approach provides an effective way to

cawy out a syseln=Rtc and cost-effective hazard analysis but that the use of technical
e and design exprience is still required. We postulate t this is becaus of
the inherent complexity of software based systems and their propensity for design
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1. Introduction

The Clinical Biochemistry Department (CBD) at the West Middlesex University
Hospital (WMH) performs tests on constituents of body fluids to facilitate diagnosis,
prognosis and monitoring of treatment. A rapid increase in the need for this service
in recent years has led to extensive automation of the analysis and data handling
operations within the department. The automation and data handling have been
implemented by integrating a computerised Laboratory Information Management
System (IJMS) into the operations of the Laboratory.

Quality assurance of the analytical processes is well established. However, in
common with other safety related disciplines and applications, there is a concern
about the reliability of the computerised data management system and the lack of
generally accepted standards. These issues have been addressed as part of the DTI
sponsored MORSE - (Methods for Object Reuse in Safety Critical Environments)
project.

WMH is a member of the MORSE project consortium (Dowty Controls, Lloyd's
Register, Transmitton Ltd, West Middlesex University Hospital and the University
of Cambridge). The MORSE project has been inspired by recently proposed
standards and guidelines [1,2,3,4] which are at various stages of development.
These standards and guidelines apply to safety critical systems and bring together
a range of existing procedures, methods and design practices which, in combination,
are untried. These methods and guidelines include the application of safety analysis
techniques at the system level and the use of formal specification methods for the
development of software. The operations of the CBD have been the subject of a
came study within the MORSE project aimed at gaining experience of developing
software according to the aforementioned standards and guidelines.

The recommendations resulting from the safety analysis on the CBD related to the
software are to be reimplemented using the RAISE [5,6] formal specification
method.

"This paper presents the experience gained in defining the CBD system and the
application of hamrd identification techniques within the overall safety analysis.

SoA
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2. Operations of the Clinical Biochemistry
Department

The CBD provides clinical and laboratory services for a wide spectrum of on-site
and off-site users. A block diagram of the functions performed within the department
is presented in Figure 1. Patient samples are received in one of two reception areas
where they are given a unique reference number before being prepared for analysis.
Details of the tests required and the patient demographics are entered into one of
three terminals which are connected to a file server running the database and
network software programs.

The file server is connected to a number of work-stations, which are bilaterally
interfaced to computers which in turn control large capacity (7000 tests/hr)
analyzers. Patient details and test request information is transferred electronically
from the work-stations to the analyzers which perform the analyses required along
with quality control checks before returning validated results via the work stations
to the file server hard disk. Further quality and validity checks are performed
before test results are printed on hard copy for dispatch to clinical staff. The data
are finally archived.

3. Safety Analysis within the Morse Project

An improvement in the safety of the overall laboratory operation was an important
objective of the MORSE project. To this end, it was necessary to look at the
laboratory as a complete system made up of hardware, software and manual
operations.

Safety analysis at the system level can typically be carried out in the following
sages,
- system definition,
- hazard identification,
- hazard analysis,
- risk analysis and assessment.

The exact requiremets and degree of detail to which the analysis is conducted is
likely to be affected by factors such as the safety criticality of the system being
considered, the financial and human resources available, the stage of development
and the timumcale of the project.

The need for improvements to the system design and operation are usually identified
during all stages of the safety analysis.

The experience gained in the system definition and hazard identification stagu of the
project are discussed below.
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4. System Definition

The first stage of the safety analysis of the CBD was to produce a clear definition
of the system under consideration, its boundaries and its intended mode of operation.
Past experience of applying safety analysis techniques in other industries indicates
that the techniques can be best applied if the system is described in terms of a
number of related modules (hardware or functional blocks) on a flow diagram. The
existing documentation at the laboratory did not describe the system in this form and
therefore a new representation of the system was produced. This representation,
aimed at capturing the main activities of the hardware installed, sample handling
procedures etc. (human - computer, computer - computer, computer - black box,
black box refers to a computer hardware and software package sold to the laboratory
by an external supplier).

A description of the CBD system was therefore produced in the form of,
i) serum sample flow diagrams,
ii) data flow diagrams,
iii) functional block diagrams,
iv) hardware interconnections,
v) descriptive text (purpose of each module, inputs and outputs, description of

its function).

Example representations of the system are presented in Figures 1,2.

It was then necessary to investigate possible failures and potential consequences in
a systematic manner. This was carried out through a Failure Modes, Effects and
Criticality Analysis (FMECA), and Hazard and Operability (HAZOP) Study [7,8].
The development and use of each of these techniques is discussed below.

5. Failure Modes, Effects and Criticality Analysis
(FMECA)

FMECA is a technique that can be applied to a system which can be broken down
into individual components. The components can be hardware blocks or functional
blocks. The methodology requires the assessor to have a clear understanding of the
function of each component along with all the inputs to and outputs from it.

The failure modes of each component can then be investigated in a systematic and
rigorous manner to establish the causes and the effects of the failure. This
informaticn is recorded on a form which is designed to collect information to
establish,
- how each component can fail,
- what the causes of failure are,
- what the effects of failure are,
- how critical the effects are,
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- how often the failure occurs.

5.1 Experience of Applying FMECA To the CBD System

Making a judgement about the criticality of an identified failure mode has been the
subject of further development within the project in order to ensure that the team
performing the FMECA had a consistent approach. A criticality rating system was
developed to score the attributes of data in a representative way. It was thought that
"units of data" in the laboratory environment comprised integrity, flowrate and the
effects of these on the system as a whole. Account was not taken of factors external
to the laboratory such as the state of the patient and whether the doctor had made
a correct diagnosis.

"The attributes of data were scored as follows,
Integrity Rating (A) Degree to which integrity is lost for individual unit of

data (categories 0,1,2),
Flowrate rating (B) Delay to flow of data through the component being

investigated caused by the failure of that component
(Category 0, 1,2).

System Effects (C) Likely effect on data leaving the overall system taking
into account any recovery mechanism (Categories 0,1,2)

Failure rate (D) Frequency with which the failure is likely to occur (Category
1,2,3)

The criteria for scoring 0,1, or 2 - was set such that any score represented
approximately equal importance within each of the attributes A,B or C.

All the above aspects have been combined together in the following manner to
establish a total criticality rating for the failure mode identified.

(A + B + Q)D

The appropriateness of the rating system can only be assessed through the use of
engineering judgement.

The criticality rating thus established was then used to prioritise the hazards
identified and the recommendations made for improving the design and operation of
the system.

5.2 Results From FMECA

Table 1 is an extract from the full FMECA that was undertaken and only shows the
details of the criticality analysis. It refers to one of two external hard disks attached
to the file server, for which three failure modes are shown. The second entry is
described as follows: if one hard disk fails, due to hardware errur (failure cause),
the affected drive cannot store data (local consequences) and since the disk is
"mirrored" by an identical disk to which it is paired, information from the backup

L W=0 I I1
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disk is used automatically. Consequently, there is no data corruption (integrity
rating 0) and no impairment of data flow (flow rate rating 0). There are no system
consequences and this failure occurs less than once per month (failure rate 1), giving
a total rating of 0.

In example 2, sample tubes receive bar-code labels bearing critical information about
the identity of the patient from whom the sample was drawn. Four failure modes
are shown only the first of which will be explained in some detail as follows. If the
wrong label is attached (failure mode) due to human error (failure cause), the sample
will be wrongly identified (local consequences). The data is corrupted (integrity
rating 2) but data flow through the component is unimpaired (flow-rate rating 0).
The error may be identified at a later stage (system rating 1) and such problems
occur approximately once a week (failure rate 3) resulting in a total rating of 9.

"These examples appear to reflect engineering intuition about the relative criticality
of the failure modes discussed.

6. Hazard and Operability (HAZOP) Study

The HAZOP study technique was initially developed in the 1960's and 1970's within
the Mond Division of ICI for application within the process industries. The
technique consists of a critical and systematic review of the system under
consideration by a multi-disciplinary team. The review is coordinated by a chairman
who leads the investigation into sections of the system with the aim of establishing
their design intent and the ways in which that section can deviate from the defined
design intent. The deviations from design intent are investigated in a systematic
manner by application of a number of guide words such as more, less, no. These
are described in more fully in [8].

6.1 Experience of Applying HAZOP to the CBD System

Past experience in applying the HAZOP technique is primarily in the process
industry where the guide words are used to investigate deviations in parameters such
as temperature, pressure and flow. Clearly these parameters are not relevant to the
operations of the CBD. It was therefore necessary to apply the basic guide words
to activities (e.g. input password) or functions (e.g. create Print file from Day file)
being performed.

6.2 Results From HAZOP

Table 2 is an extract from the HAZOP study and presents an example of a hazard
identified within the electronic data transfer operations. This situation refers to the
transfer of test requests from the file server (Figure 2) to one of the analyzer
workstations. A program, called from DEI, copies records relevant to the analyzer
to a print file. If the hard copy print-out is considered satisfactory by the analyzer
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operator, a further transactional file is created from which the records are
downloaded to the appropriate analyzer workstation. Once the records have been
downloaded, all records pertaining to this analyzer are flagged in order to prevent
downloading of duplicate records.

In the example presented in Table 2 the activity being considered is the flagging of
fields within the dayfile after the work has been accepted by the operator. The
purpose of this activity is to prevent the same work requests being sent forward with
future batch transfers.

A scenario has been identified where more records are flagged than should be when
the operator accepts the printout of work. The cause of this is additional work for
the analyzer in question being added to the dayfile from the other data entry terminal
(DE2) after the request for the printout has been initiated. This will mean that some
samples will remain untested.

The software to carry out the above operation can be easily modified to avoid the
loss of work requests caused by this scenario.

Example 2 is an extract taken from the HAZOP on the LIMS hardware which is
shown in Figure 3. All node terminals are connected by cables to a junction box
(multi-function access unit) which is in turn connected to the file server computer.
The file server is a stand alone PC with external hard disks which are mirrored by
Novell networking software.

In this example the deviations from design intent of the junction box have been
considered. A scenario has been identified under the guide work "no" where the
failure of data flow through this section of the system would result in the whole
network becoming inoperable. Action has been recommended to investigate
contingency measures in place to recover from such a failure.

7. Discussion

It was found that the degree of scrutiny of the system possible as part a hazard
identification exercise depended on the amount of detail included in the system
definition. A number of revisions of the system definition were necessary to enable
assessment to an adequate level of detail so that useful results could be obtained
from the study.

The importance of system definition is stressed particularly since the application of
safety analysis in other such laboratories will require a considerable amount of effort
to define the system in a form that will facilitate such analysis.

The application of FMECA and HAZOP to the operations of the CBD was generally
regarded to be a successful exercise. Each of the techniques has its advantages and
disadvantages which are discussed further below.
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The main advantage of the FMECA as compared with the HAZOP was that it
enabled a criticality rating to be applied to the hazards identified and hence eased
prioratisation of the recommendations. In the case of the CBD the analysis was
carried out by a number of people working on their own. It was found that the
progress of the analysis and degree of scrutiny depended significantly on each
person's understanding of the system. It may be possible to improve the progress
rate and the degree of detail by employing small teams of personnel according to
their knowledge of the components being investigated.

The HAZOP study was performed by a team of people with varied knowledge about
safety analysis techniques and the CBD system. In this case it was found that the
written system definition could be considerably enhanced by the knowledge of the
team members during the study. The HAZOP approach was found to allow much
more free thought about potential failures and hence was better at picking up failures
resulting from combinations of events.

The role of the chairman in stimulating thought within the HAZOP team was seen
as critical in the application of the technique. The lack of previous experience of
applying HAZOP in a clinical laboratory environment resulted in a number of
teething problems to begin with. These were primarily caused by the use of
inappropriate guide words.

The approach of using the basic set of guide words applied to activities and functions
appeared to work well. This approach can be recommended as a good starting point
when applying HAZOP in an industry where its use is untried.

8. Where Next

The application of the safety analysis techniques has been very successful on the
CBD. It is however recognised that a considerable amount of effort went into the
preparation stages where the system was defined in a form that would easily
facilitate safety analysis.

With this constraint in mind it is felt that the use of safety analysis techniques can
be more readily accommodated in new developments where the system can be
defined in the required form at the outset as part of the overall documentation of the
project.

It is thought that the use of HAZOP is more conducive to existing systems where
the system definition can be enhanced during the study by the knowledge of the
HAZOP team members.
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Table I - Example. of Hazards Identified by FMECA on the CBD.
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Table 2 - Examplee of Hazads Identified by HAZOP on the COD.
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The Benefits of SUSI: Safety Analysis of
User System Interaction

M F Chudleigh and J N Clare
Cambridge Cnsultants Limited

Cambidge, ngand

1 Introduction

The = of computer based systems has many advantages, including inceased
fu nlity, increased flexibility and, hopefully, ease of use. Because of these
advanages their use is inceasing dramatically, including applications where failure
could have an advere impact on safety. It is important to remember that most such
systems have comat with human users and are used in 1 Sit im where there am
se prwed and ways of working.

For industries such as petro-chemical, rail transport and air transport the
nsequences of a failr could be catsophic and they have realised that evaluating

and conrolling the risk to humans arising from failures of such systems is vital.
The process of evaluating the possible safety failures is known as hard analysis.
One puacua method of caymg out hazard analysis is the Hazard and Operbility
Stuy (HAMP) [1].

In recent yea thm has been an incresing asation ta considering the place
of the human in a system (human factors) should be an important part of the system
"design. Tne critical isu is that as systems become more complex the human
operator are increasingly prone to 'error'. In this case aror is used to describe
behaviours that were not the designer's intent. In part, such behaviours occur
because the operators an not able to comprehend their role with the system.
However, a key part is that the operators choose to do smething different to the
designes intent because of new working pwcedures, or because the system did not
perform as the designers intended. However, once an incident occurs then we
nrmally identify human ear as the root cause [2].

When we consider the design and implementation of such computer based
systems we find that at least three specialists are involved: those who design
functionality into systems (application designers); those who design the user
Iaerfim (humnm computer interaction (HC) specialists); and those human factors
specialis who examine how paricular ta are canfied out.

In order to build effective, safe systems it is clear that all three specialists must
be able to communicate with each other. However, the reality on most systems is
that the three areas all have their own specialist vocabulary and models of the
systm, and they tend to wor itl of each other. In addition, ind esri
which have an established recmd of building safety critical systems are likely to
hav specialists in safety. These pasonnel, apin, have their own pricular ja
and often may not be familiar with the techniques of developing computer based 1



124

systems. This lack of co-ordinated coverage during system development has the
poential to lead to hazardous situations.

We have developed an approach that we believe shows promise in dealing with
the above problem. The approach is called SUSI, standing for Sfety analysis of
LIM System Interaction. SUSI comprises two parts:

" A common representation of all entities in a systems so that communication
between specialists is enabled; coupled with

" a structued, hazard analysis procedure which addresses features that am particular
to human-machine interactions

Te remainder of this paper describes the approach and gives examples of its use in
two different applications at different points of the system lifecycle. One is of a
new medical system design and the other is of an operational maritime system.

2 SUSI: A Common Representation

In describing our work in developing a common representation for systems we
address three main areas. First, the key realisation that a common representation is
both necessary and possible: it underpins the majority of our work in user system
inemction. Second, the applicability and limitations of the chosen approach.

2.1 A Common Representation is Necessary and
Possible

In building systems, a variety of expertise is necessary. Software application
designers tend to treat the user as a separate entity from the system and leave an
external msoucesin labelled HCL The building of user interfaces is then treated as a
sqmrate design activity given to HC specialists with particular techniques. Human
Factors specialists often work apart from system developers and concentrate on the
activities carried out by humans (task analysis) with its own vocabulary [3]. This
analysis may well be aimed at defining manning levels or training requirements.

In developing new systems, these specialists all tend to build their own models
of the system which are not easy to correlate with the other models. In addition, the
people who want the system, those who will use it and those who might have to
judge its safety all need to have an underanding of the system. However, they all
do need to communicate with each other to ensure they share a common
understanding of the systm. There needs to be a stable system view from each of
the perspectives Gaining that understanding is not easy with a plurality of system
models and it is difficult to imagine the consequences to the rest of the system of
changes in one representation.

An analysis of the features that need to be described in understanding human
activities [4] and those used to describe a software system [5] show a commonality
of entitier

human task software process
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human information now software dataflow
4human interactions software control

human ocwnerafon software dambm
With the existing widespread use of software dataflow analysis and description

tools there would thus appear to be a basis for a common representation. In
adopting a dataflow and process model for the human components of a system we
can now generate an integrated representation of the overall system. Using this we
can explore the consequences of failure in a consistent manner across the whole
system. In Figure 1. part of a medical imaging system is shown to illustrate the
convention used in this type of representation. The key components are circles to
reprasent a process (human or machine), a solid line is a dataflow, a dashed line is a
control flow (start, stop etc), and two parallel lines represent a data store (we show
displays as data stoes because data may be written to a screen, but there has to be an
explicit human process to read the data).

• Jmaation

b•rcoded is hems priority side MW

unstained slie
sile IRSPS outpu sides

p r ._emporary tOy

,A.

Fgure 1: Part of Decomposition of Preparation and Scanning Process

2.2 The Scope of the Modelling Approach is Wide, but
There are Limitations.

The approach works well as long as the human activity to be modelled is primarily
information intensive. Thus activities such as decision taking, information tranfer
and classifiaion/soring are good matches, such as in the medical example above.
The vast majority of human work falls into this. information intensive, class but
there ae limitations. The approach is not effective when the human processes have
significant motor skills or introspective reasoning components. An example where
motor skills take a prominent part might be the interaction between the driver of a
Formula I racing car and the active computer systems used to manage many of the
car mechanical fumcdons.
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We have found'that a dataflow and process model for both the human and the
compuder parts of a system allows us to generate an integrated reprsetation of the
overall system. This model can then be used to explore various properties of the
system. A major advantage we have found is that such models are easy to
understand by non-computer specialists and that users of systems are able to
commamt on and critique designs at a very detailed level.

In the next section we show how the conequences of failure may be examined
in a consistent manner across the whole system.

3 SUSI: Hazard Analysis Using Amended HAZOP

An approsch to assuring safety of systems has been well established over many
years. However, only in more recent years has the potential for computer systems
to fail in ways that might impact safety, been recognised formally in standards work
[6,7]. To facilita the discussion two definitions from Refererne [6] are given:
A hazard is a physical situation with a potential for human injury.
Risk is the combination of the frequency, or probability, and the consequences of a
specified hazardous eveL

Both emerging standards and existing practice in established industries uses the
same basic lifecycle approach to addressing safety which may be summarised as
follows:
"* System definition generating a concise and complete description of the system

underrenvew
"* Hazard analysis to identify the potential for hazardous events
"* Risk analysis to judge the safety risk of the system as defined
"* Risk acceptability: detminaion of whether the risks are acceptable
"* Activities, if necessary, to modify the system definition or include additional

measures in order to reduce the risk to an acceptable level
Hazard analysis is thus a key step in the process and a number of structured

procedures have been developed to provide confidence that the hazard analysis is
complete and thorough. This section introduces one of the main hazard analysis
methods, HAZOP;, explains how we have extended the HAZOP to address user
system interaction; and describes some advantages and limitations of the approach.

3.1 What is a HAZOP?

The full name of HAZOP, Hazard and Operability Study, says a great deal about its
p o It is to ensure both dat necessary features am ncrpormed in a design to
provide for sanf operation and that features are avoided which could give undesirable
oulcnms (iCe hazards). The c•hnique was developed by ICI in the late 1960's and
has grown to be well established in the petrochemical industries. An excellent
inmtodon to the technique is given in [1].

In the pvCem industries it is usual to describe plant designs in the form of
Piping and Instrumentation Diagrams (P&IDs). The HAZOP is carried out by a
small ma with the following members: eawn leader, team secreta, personnel who
have detailed knowledge of operation of similar systems; personnel who have
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detailed knowledge of the design intent of the system; specific technical specialists
as necessary. The team work logically through the P & IDs examining deviations
from normal operation asking "can the deviation happen?" and if so. "would it cause
a hard?" (a hazard could be things such as a fire or release of toxic material). To
guide the process a series of guidewords and potential deviations are used. Thus for
liquid in a pipe, a relevant guideword is "flow" and potential deviations are "high,
low, no, revrse". For fluids another guideword is "pressure" with deviations "high,
low". In theory, each guideword/deviation should be applied to each process line
and vessel. In practice, an experienced team leader will judge the correct detail of
quetioning for each area.

3.2 Modifying HAZOP for User System Interaction

A critical element of the HAZOP process is the choice of parameter keywords and
guidewords for deviations. We believe the guidewords for petrochemical plant have
limitations when addressing computer based systems and user system interaction.
Other work by Cambridge Consultants and their parent company Arthur D Little has
led to modifications of the HAZOP approach for computer based systems and this is
repotd in [8l and [9].

For our work with user system interaction we have developed a vocabulary of
discrete entities which have associated deviations. These are shown below

Eaft eviaton Qmmat

Process Failure Execution fails, data is used ily
Enor Process algorithms wrong or contain flaw(s)
Wrong Process Wrong process selected or human short cut
Itrrupted Process not restarted appropriately

Data Flow Corrupted Data changed in transit
None Data does not exist
Wrong sourceink Data takenwsent from/o wrong place

Dam Store Corrupted Data changed in store
None Data not stored or not found

Control Flow Couted Wrong control signal
None Control does not exist
Wrong souzvcsink Sent to/eceived from wrong place

We have found that the traditional HAZOP team struture and general approach can
be used without change. However, it has been found essential to have independent
technical personnel who are experienced in system design and human factors as part
of the HAZOP team.
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3.3 Advantages and Limitations of the Modified
HAZOP

The main advantages of the approach are: it is done by a team; it gives a top-down
approach to the system; and it can be used both on new system designs and on
exstng systems.

The team approach brings a variety of expertise and viewpoints onto a common
Iprblem and concentrating on hazard identification leads to productive session.
Also, the team, by providing a variety of viewpoints helps to avoid excessive
ivestgaton of non-credible hazards.

The top-down approach, examining the whole system first, allows the homing
in to ky issues based on the potential hazards and is very good at assessing system-
w implications. The approach of looking at deviations from design intent, then
their causes and consequences encourages exploration of non-obvious interactions
both of the user/operato with the automated system and of the automated system
with its hardware environment. The use of a HAZOP provides guidance towards the
most critical areas to concentra on in any subsequent low level investigation.

The HAZOP fits naturally at all stages of the life of a system, from concept
through to operation. In later sections we give an example of use during a medical
system conceptual design stage and another example of analysing an existing
ope•tional maritime system.

There are, however, limitations to the HAZOP approach. We have found that
straight'orwad application of the deviation guidewonts is not sufficient the process
relies on the experience and intuition of the team members (especially of the
independent technkal exet). Futher, the choice of an experienced HAZOP
is key. It is the leader who controls the pace of the analysis and it takes significant
experience to guide the team discussion to the most critical areas while still
ensuring full coverage within usually tight time constraints.

4 The Use of SUSI in a New System Design: a
Medical Laboratory System'

This section is divided into trme parts: first a brief description of the system to
partly automate screening of cervical specimens, then an outline of the dataflow
description and finally some of the results from the HAZOP analysis.

4.1 The Medical Imaging System

The Human Genetics Unit (HGU) of the Medical Research Council in EFdinburgh
have produced an experimental version of a semi-automated system for screening of
cervical sme samples to identify abnormalities which might lead to cancer. The

1.The work carried out here was part of a collaborative project betwe The Comm for
Software Engineering Limited, Cmnbridge Consultants Limited and the Human lnetics
Unit of the Medical Research Council.
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HOU have been working closely with the Department of Pathology of the
University of Edinburgh to carry out trials on the system and both parties wenr
cosly involved in the work presented hre.

Within a cytology laboratory the equipment would consist of two major parts, a
robot slide preparation system (RSPS) and a slide scanning system (SSS). The
RSPS takes in sample bottles submitted by clinics and transfers a part of the
material as a monolayer sample onto slides.

The SSS is an image processing system which inspects objects on the slide and
classifies them into various categories. Where abnormal objects are identified, the
system stores digitised images for subsequent human inspection. Both the above
systems am supported by a computer based system providing overall administaion
and interfces to the laboratory main computer which stores patient records.

4.2 Development of the Dataflow Description

The full system description is far too long to be included here: we give simplified
versions of two levels of the description to illustrate the method. The system
context identifies the complete system under consideration and its principleinteractions with the external world. Here there are two external entities; the clinics
or surgeries which collect samples and have reports returned and, within the
laboratory, the archives where reports and samples are stored. Note that the total
screening system includes the human administrators, technicians and medical
persn nel who intract with the machine sub-systems.
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Figure 2: Top Level Decomposition of Medica System
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The top level system is then decomposed whilst preserving the external data
flows. Figure 2 shows the division into four processes: sample and form validation,
prepuration and scanning, review process, and laboratory computer data vamet.
Figure 1 (shown earlier) gives the decomposition of the preparation and scanning
process. In discussing the design of the system it became clear that process 2.2
Match items was a key and human intensive process. It was necessary to include an
explicit process because the automated part of the system had few opportunities to
cross check for aros in the pairing of patient forms and patient sample bottles. As
the design proceeded it was also recognised that there were other quality control and
sorting processes that could also be carried out at this stage of the overall process.
As a result the Match Items process is an intensive human process which achieves
the following: cross-checking, visual quality assessment of prepared slides,
attachment of label to each slide and assignment of samples for priority processing
where there are clinical indications. To aid the human carry out the process a snreen
is used to display status information and a barcode reader pen is used to cross-check
barcoded items against patient details.

The dataflow design was produced by a team of a consultant (one of the
authors), a cytopathologist and a member of the design team of an experimental
automated system. The team approach ensured that the various viewpoints on the
design were captured in an effective manner and partitioned activities between human
and machine in a way that was readily understandable to all those involved. This
level of common understanding had not been achieved previously despite regular and
detailed liaison.

4.3 Application of the modified HAZOP

The HAZOP team included representatives of both the design team and the intended
users of the system. The HAZOP leader role was taken by a member of Cambridge
Consultants who had no direct involvement in generation of the dataflow design but
was aware of the overall goals of the project. The design consultant provided the
technical expertise in system design and human factors.

The HAZOP process focused on two types of issue. One of these related to
design aspects which would enhance operability and safety, the other was from the
experience of current staff who were able to identify practical and procedural
constraints which would impact the viability or safety of the system. Below we
give some of the observations recorded during analysis of the Match Items process.

Recommendation 1. Bar coded form wrong through mismatch of names.
Wrong patient gets matched to slide. Do double check.
Recommendation 3. No report/label because detached. Leads to delay. Print
report and label on same form.
Recommendation 4. Wrong slide pair because of incorrect location of slide.
Wrong patient could be matched. Check barcode and accession number match.
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5 The use of SUSI in an Existing System:
Maritime Control

A hazwd analysis has been carried out on the navigation system for a vesseL This
was pat of a series of investigtios into hazards associated with coastal traffi
operPain3 in crowded waters. The objec was to identify amea where hazards could be
expect� to have signifiant effects. The SUSI methodology was used as the basis
for the analysis. The firs stage was the prxdction of dataflow descriptions of the
activities of watch keeping officers. This was done on a series of sea voyages
during which the dataflow models were constructed and reviewed by experienced,
seaman officers. Figure 3 shows the first level decomposition of processes, most
external data flows have been omitted to aid intelligibility. As can be seen the
principal processes are navigation, ensuring that you are where you should be;
collision monitoring to identify other mobile hazards; and conning, giving orders
for changes to ship speed and course. Each of these processes were decomposed to
lowe levels for the actual analysis.
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Figure 3 Decomposition of Ship Navigation

On completion of the data flow analysis a HAZOP team was assembled
consisting of a HAZOP leader, secremtary, dataflow/human factors expert and
experienced navigating officers. At the lowest level of each branch of the
Aft-- dgthe guide words were used for every data flow, process, data store and
control flow. The output was recorded using a HAZOP database tool. The HAZOP
ouput was mvised post team session in order to ensur consitency of responses and
to cover areas that the HAZOP team were unable to detail at this time (a lack of
deail knowledge of the operating prcedurn).
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The next stage was to develop fault trees with top events of collision,
grounding etc. The fault amees were constructed using available data on navigation
aid failures and human error rates. Human error rates were factored by stress level,
compexity and experience. The human ersor rates used were for single events and it
was noted that normal navigational procedures require multiple independent
sightings. If errors are suspected then new sightings are taken. For example a
visual fix requires the bearing at regular times of three fixed points. All three have
to coincide for an error free fix to be recorded. In many cases this would then be
cross checked with a radar fix or a navigational beacon.

The SUSI approach was both necessary and valuable for this task as there were
no simple descriptions of the navigation tasks or use of navigational aids. There
were a series of operating procedure manuals, the training materials for ships
navigation officers and various instructions to mariners issued by regulating bodies.
In order for the HAZOP team to operate this mass of data had to be compiled into an
easily digestible form which could also be validated against actual operational
practice. The development of the dataflow description provided a clear and easily
understood view of these activities (one training officer has decided to use them as
navigational training material).

The overall process of hazard analysis was completed in four weeks, from
boarding the first ship to delivering the final report.
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1 INTRODUCTION

Achieving technology transfer isa perennial problem. Yet, without it, industry's
problemscan remain unsolved, and solutions to one problem are not generalised
to more or broader applications.

There are two objectives of the paper. The first is to raise a number of issues
concerning the transfer of technology from academia to industry. The second
is to show how a community club is helping to facilitate technology transfer.

2 ISSUES IN TECHNOLOGY TRANSFER

Some of the typical problems affecting the transfer of technology from academia
to industry are listed, with brief notes.

2.1 Traditionally there is a delay between the development of a technology
in academia and its implementation in industry. Some say that this can be as
long as ten years. Many industries have no formal contacts in academia and
they do not know how to find out what new technologies are available.
Moreover, academia is not noted for effective marketing of its prodtucts.

2.2 The terms in which academics typically present their findings are those
understandable to other academics, and not to industrialists. This contributes
to the delay in the recognition and implementation by industry of new tech-
nologies.

2.3 Even when transfer does occur, it is usually to a small sector of industry,
and the majority of those who need the technology do not receive its benefit.
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2.4 Feedback from industry to academia is not standardised. It is seldom
good and almost always slow. Thus, potentially useful but flawed or unready
technologies are rarely corrected.

2.5 Communication between the users of a technology, particularly across
industrial sectors, is at best poor and often non-existent. Thus, the lessons
learned by one company, or industry, are not communicated, and others must
undergo the learning curve for themselves. When the technology is flawed,
finding the problems and suffering their consequences must also be repeated.

2.6 When there is effective marketing of new technology, for example by
consultants, it is not uncommon for inappropriate technologies to be trans-
ferred. Consultants often transfer their pet technologies rather than those most
suitable to the problem in hand.

2.7 Typically, technologies are developed for specific applications in specific
industry sectors. Often, however, they are proposed as being effective over a
much wider range of applications. When they are found to be ineffective, those
who have used them may be left suspicious of academic innovations.

2.8 Much technological development in academia is directed towards ob-
taining degrees and preparing publications rather than to getting the technolo-
gies right. The resulting technologies may then not be properly refined. With
luck, such technologies do not get transferred. When they are transferred, they
are often not suitable for use, and industry wastes time discovering this.

2.9 In the normal course of events, a great deal of technology transfer is of
proven technologies to new environments rather than of the introduction of
new technologies.

3 THE SAFETY-CRITICAL SYSTEMS DOMAIN

Safety-critical computer systems are a relatively new phenomenon, but the
domain is expanding rapidly. Moreover, it is not growing out of nothing, but
is the coming together of a number of other fields. The two main components
are safety engineering which, though not new, has traditionally been restricted
to a small number of industry sectors, and software and systems engineering,
which is itself a new field. In addition, safety-critical systems are expanding into
almost every sector of industry, and demanding input from other specialisms,
such as human factors and quality management. This leads to the following
observations on the need for technology transfer in the safety-critical systems
domain.
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3.1 There is an urgent requirement for the development and transfer of new
technologies to meet the particular safety demands of safety-critical systems.

32 Software and systems engineers are typically not familiar with safety
engineering, and there is a need for the transfer to them of existing safety
technologies.

33 Similarly, there is a need for safety engineers to become familiar with
computer systems and software technologies and practices.

3.4 The knowledge and technologies of the human factors domain, on such
issues as human dependability and human-computer interaction, urgently
need to be assimilated in the safety-critical systems community.

3.5 The need is urgent for an improved awareness, in all sectors of industry,
of the application of safety-critical systems.

3.6 There is the need for the transfer of existing technologies and practices
between industries.

3.7 If the development and transfer of technologies is to keep pace with
expansion in the domain, there needs to be focused research, and easily
accessible communication links between industry and academia. Improved
communication links would also allow transferred technologies to be im-
proved and made fit for purpose.

3. Mechanisms are needed for communication across industry sectors, so
that experiences of new technologies can rapidly be communicated.

1,"

4 SETTING THE SCENE FOR A COMMUNITY CLUB

Technology transfer may take place in a number of ways. For example,
individual companies may make contact with one or more universities or
research establishments; more and more, universities are encouraging the
setting up of 'spin-off' companies for the purpose of marketing and selling their
technologies; professors and other researchers, in their roles as consultants, are
active in the transfer of technologies, and they carry considerable responsibility
in choosing what they recommend to their clients; reports and publicity may
catch the attention of industry. There is also the possibility of achieving
technology transfer via a community club.

In 1991, in the UK, the British Computer Society (BCS) and the Institution of
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Electrical Engineers (lEE) were contracted by the Department of Trade and
Industry (DTI) to set up a community dub for technology and information
transfer, and for raising awareness, in the safety-critical systems domain. The
two Societies were assisted by the Centre for Software Reliability at the
University of Newcastle upon Tyne, who in turn engaged the current author to
be the dub's Co-ordinator. The dub was launched in May 1991 and the high
level of interest in it was demonstrated by the attendance of 255 delegates at the
inaugural meeting in July of that year. By May 1993, there were 1682 members,
of whom 130 were from outside the UK.

5 THE CLUB'S OBJECTIVES

The dub exists to facilitate information and technology exchange, and to
increase awareness, in the safety-critical systems domain. It is recognised that
in order to be successful in this, the club must gain access not only to engineers
and technicians but also to managers with decision-making responsibilities.

By facilitating communication across industry, the club's objectives are to:
* Increase the rate of dissemination of useful technologies;
* Prevent the spread of flawed technologies by the rapid communication

of experience;
* Improve the industrial testing of new technologies;
* Bring industrialists together to plan feedback to academia and to coordi-

nate the sponsorship of research.

By facilitating communication between academia and industry, the club's
objectives are to:
* Improve the choice and application of technology;

Accelerate the feedback to academia of experience in the use of technolo-
gies;

Improve safety-critical computer systems which are supplied to indus-
try;

* Facilitate the targetting of research;
• Accelerate the correction and improvement of flawed but useful tech-

nologies.

It is also the club's objective to provide a platform for reporting on research into
new technologies and experience in their use in industry.
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6 SUCCESS IN MEETING THE OBJECTIVES

6.1 Newsletter

A newsletter, of at least 10 pages, is published three times per year and
distributed to all members. Typical contents are:
"* Feature articles on safety-critical systems matters;
"* A calender of events on safety-critical systems;
"* A calender of events on related issues;
"* Calls for papers for future conferences;
"* Reports on new products;
* Reports on government studies or initiatives affecting safety-critical
systems;
0 Comments by members on safety-critical issues.

6.2 Seminars

By June 1993, theclub had held nine seminars. Of these, seven were one-day and
two were two-day events. The topics covered were:
"* Inaugural meeting and introduction to safety-critical systems;
"* Requirements for safety-critical systems;
"* Education and training for safety-critical systems professionals;
"* Safety-critical software and technology in the medical sector;
"* Standards for safety-critical software;
"* Human factors in safety-critical systems;
"* Design for safety and reliability;
"* Safety-critical systems in the nuclear sector;
"* The safety case.

In the interest of bringing industrialists of all sectors together, the majority
of the seminars are on topics which are of broad application. However, it has
also been the club's policy to hold one sector-specific seminar each year. In 1992
and 1993, these were devoted to the medical and nuclear sectors respectively.
In each of these cases, and particularly in the latter, many other industrialists
and academics attended in order to learn the lessons of that industry. Thus, the
objective of cross-fertilisation is being achieved.

The speakers at the first five seminars were invited to prepare chapters,
based on their presentations, for a book. Twenty-two speakers responded, and
the resulting book [11 was published by Chapman and Hall in 1993.

At the nine seminars held so far, the total attendance has been 1283. At each
event, the delegates have been asked to complete questionnaires on the quality
and value of the seminar and, without exception, the feedback has been
positive.

By the end of 1993, two further one-day seminars will have been held, on
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"Testing and validation of safety-critical systems' and 'Measurement of safety
and reliability'.

6.3 Annual Symposium

The club has initiated an annual three-day symposium, the Safety-critical
Systems Symposium (SSS), to be held in February of each year. The first, SSS'93,
held in Bristol, attracted 190 delegates. Thus, the total attendance at the first ten
dub events was 1473 - an average attendance of 147.3 delegates.

The 19 papers presented at the symposium covered a broad spectrum, many
reporting on research projects involving collaboration between industry and
academia. One of the goals of the club is to provide a forum for the reporting of
the results of these projects, and in the years to come the Safety-critical Systems
Symposium will provide this platform. The proceedings of the symposium [21
were published by Springer-Verlag.

SSS '94 will be held in Birmingham in February 1994.

6.4 Ad Hoc Activities

The principle of the club's existence is cooperation rather than competition.
Thus, the dub has participated and assisted in activities not mentioned among
its principal objectives. In this respect, it has co-sponsored events, assisted in the
organisation of workshops, given advice on safety-critical issues, brought
together potential participants of collaborative projects, and given publicity to
safety-critical matters. The dub continues to offer support whenever appropri-
ate.

7 CONCLUSIONS

This short paper has listed a number of issues in the transfer of technology
between academia and industry. It has also reported on the experience of how
a community dub can contribute to technology transfer, effectively and over a
broad spectrum.

In two years of operation, the Safety-Critical Systems Club in the UK has
attracted a large membership, staged ten successful events, published two
books, and further facilitated technology transfer by the publication of a regular
newsletter, the co-sponsorship of events, and the provision of advice. It pro-
vides a model which could be used in other parts of the world.

8 REFERENCES

[11 Redmill F and Anderson T (Eds): Safety-critical Systems - Current Issues,
Techniques and Standards. Chapman and Hall, London, 1993.
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[21 Redmill F and Anderson T (Eds): Directions in Safety-critical Systems - the
Proceedings of the First Safety-critical Systems Symposium. Springer-Verlag,
London, 1993.

Information on the Safety-Critical Systems Club may be obtained from Mrs ]
Atkinson, The Centre for Software Reliability, The University, 20 Windsor Terrace,
Newcastle upon Tyne, UK.
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Subsidiaries and start-up
Spin-off companies

of Inria

Panelist: Jean-Piem Bauie
Inria.Renn/irisa.

Campus de Beaulieu - 35042 Renn cedex France

This document is a summy of Inra's policy for the creation of private m

as a phivileged means for the transfer of basic research results.

1 Inria

The National Institute for Research in Computer Science and Control Automation

(Innia) is a frieh scientific public instiume unde the r of the ministry

of research and technology and the ministry of industry. With its headquarters
located at Rocquecourt near Versailles, Inia has five reseach centers located at

RSophia-Anmio Rennes, Gkenble and Nancy respectively.

lnia brings together 1000 scientists, including 250 permanent research staff and

more than 300 PhD students. Its budget in 1991 is of the orde of 450 MF (75

M$). Inria's activities is infornation processing and control thory encompass basic

and applied research, design of experimental systems, international scientific

exchange. cooperative interntiona programs and technology transfer. The latter is
prbaby one of the most important ones in the context of information technology

whme changes h.ppeurdy.

2 Transfer of research is a must

IwLa Ins, over the last 10 yeas, encouraged the diss o of its research results
td them In the Indusaial and scientific s. The transfer Is

organized t iw nfom~ation seminars, research conmnsti, recetion of wwrbersed
md engineers from industry in das research urns and detachment of Ilaa's staff

to ahkusid rIsnrh I nF.
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Ibis policy has been systematically a by a diffusion, as large as

posIbl~e, of results through publications and dsmnaonof software to parter
(universities, public and industrial reseac c , industrial departments of
rsearCh, 64z.). M& diffusion allows for the evaluation of prototype and the feed-

bek by the users.

3 The creation of "high-tech" companies:
a solution for transfer

Lare companies ae not always able to assunm a direct Mrsfer of research

prottyp especially for basic tools ; this simaion may be due to the rigidity of

large stractues, the diffUltes to manage the competition with internal as, the

difulties to adapt new tecnoogie to, the inurnal stmagy, the cost of knowledge

trase, but, mWnly, the traer of products witho•t the troader of Men.

Inria has been encouraging the creation of high tech companies by its own
resechers ; these companies remain dcose o reseawrh for the main remao that their

staff is composed almost exclusively of former researhers. Their business is

meover mainly product oried.

In this context, fourteen companies have been created up to now in the environmet

of Ima. They are either subsidiares or no, but their main goals are always the

transfer, exploitation and commercialization of know-how and prototypes

oginatinS from laria.

4 Subsidiary or spin-off ?

laua's legal status (Public Institute for Science and Technology) allows the

intitut to 3are in he capital of privale companis. In this context, Inria crealed

three mbsidiaies, (Simulog in 1984, hog in 1987, 02 Techology In 1990) where
i conaros the mjority of the captal, and Gipsi S.A. (coming from the goupment
Gipsi SM 90) controlling a minority of the capital. The creation of such

re only occurs under the following conditions:
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* alag hieseumatm I. resarch

* m aivuKmed mwmogy,

a a nw but attractive umaK
* a very competitive hunatkna contxt,

* the ladk of motivated indutial parne

During hids tme, researdes, engieers or forme PhD stents of Inda have
created fifteen companies. 'They represent one of the most dynamic vectors for
ransfer. The majority of thden dMutialz and exploit products originating from

Ima under liceuue. Tese licenses aw negociated on a nam-cxchuslve bais and

mytes dwe-Maited smowdiag to t min as M o IDuM l pI mner.

One of the fifty licenses for prototypes active in 1990, nely hlAf of thm involve
WoD-off companies and subsidiaries. More tmn 70% of the toD amount of
royalties an coming from thee companies and theprogression accelertes (onyly

25% in 1989).

Convearely, thse companies help Ima to undersnMd stratgic informtion

Wegalig mk=0 needs, help*ih I Dia O fatk strategic decisions concating resear

orienation.
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Human Medium in Technology Transfer

W. Cellary
Franco-Polish School of New Information and Communication Technologies

Poznan, Poland

To analyze problems of technology transfer between acadenia and industry, first, it is
important to realize expectations of both sides. In my opinion, academia expects
money and problems to be solved, while industry expects problem solutions and
people trained in research. A question is: what is the role of these people trained in
research in technology transfer from academia to industry, and why they are expected
by industry? One may believe that a medium of technology transfer is paper, i.e.
written documents describing problem solutions. I claim that to transfer a new
technology a human medium is required. In a new technology (I emphasize word
new, meaning here revolutionary) developed in academia, i.e. mostly at the
theoretical level, the main concept is established, but a lot of problems remains
unsolved. I mean here the research problems, not just implementation ones. If the
concept is revolutionary new, it is difficult to transfer it in its integrity to a foreign
team. Still more difficult is to transfer an idea how to solve the related problems in
such a way that the main concept is not violated or deviated. The most efficient way
to transfer technology is to use humans, i.e. the researchers who developed it, as a
medium. This makes, however, a painful hole in academia, and thus is successful if
academic research teams are relatively big and may be split.

Let us now analyze a career of a young, over average talented researcher in computer
engineering, who prepared his PhD in collaboration with a team developing a new
technology. Assume that he is 28 years old when he gets his PhD, and that he is
hired by industry to transfer technology and develop a product based on this new
technology. Nowadays, mean life duration of a software product is around twelve
years. If we add three years to develop the product, we get fifteen years. Assume that
half of this time is creative, i.e., some scientific research needs to be performed,
related with the product. We may call it an offensive phase. The second half, called
the defensive phase is devoted mostly to maintenance and some development:
moving to various platforms, integration with various software products available on
the market, etc. In this phase, innovations are restricted, because of compatibility
with previous product versions. Our researcher is 35 years old at the end of the
offensive phase of the product. At this age he has a good potential of creativity and,
moreover, he has good experience in development of industrial products, cooperative
work in a team, etc. There is no reason to keep him to maintain the product during

r• n m mmmmm m mmmm ma ma m[]
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its defensive phase which is not creative. He is at a good point of his professional
career to assume responsibility for a new advanced project. There are, however, two
menaces: first, that he will continue the old project in a new frame; second, that he
will create a new project, but his role will be reduced to the managerial aspects only.
To avoid these menaces he has to be trained in new technologies developed in
academia during the time when he was occupied with his first product. Seven years
elapsed since his PhD is a very long period in so active scientific domain as computer
engineering. During this period some new concepts and new research directions
appeared that are more suitable and more promising for new products that have to
defend themselves against other products even ten years after. A challenge for
academia is to integrate and efficiently train such people, as a medium of advanced
technology transfer. They need some special organizational solutions, because they
cannot be simply mixed with postgraduate students. I think they need around two
years of training: one year to study a new domain, and one year to start to produce
original results in this domain. A good solution would be a kind of sabbatical. Its
advantages are the following. For industry, it is an investment in future products
using the most advanced technologies. For academia, it is the growth of research
potential, financed by industry, and feedback from practice and applications. In the
Franco-Polish School of New Information and Communication Technologies we are
encouraging industry to apply this solution.



Technology Transfer - from Purpose to Practice

Bob Malcolm
Malcolm Associates Ltd.
Savoy Hill, London, UK

Abstract

It is submitted that technology transfer between academia and industry is not a
matter of academia telling industry how to do things better, but of industry better

understanding its own needs and being better able to evaluate academic work.

I Introduction - the purpose

One of the recommendations of the IEE-BCS report on "Software in safety-related
systems" [1] was that there should be a programme of awareness and dissemination
of latest developments and of best practice, in parallel with a research programme.
The research programme is now established, and there are now 35 projects, with
over 130 industrial organizations, and over 30 academic institutions participating
[2]. This present paper presents the considerations involved in establishing the
related technology transfer programme.

2 Policy

The first step in any government-led initiative must be to identify the policy which
both guides and constrains any action. In the present case the relevant policy was
set out in a UK government policy paper concerned with innovation (a 'White
Paper') from 1988 [3].

Frequently, technology transfer is discussed in the context of 'encouraging adoption
of best practice'. This sounds very reasonable at first hearing, but, if interpreted too
simplistically, it implies that someone knows what best practice is; that someone
will pick technological winners which they will inflict upon everyone else. Would
you trust any individual, or worse, a committee, to do this on your behalf?

An alternative approach was presented in the White Paper. This is that the role
for any government-inspired technology transfer activity should be to make it easier
for suppliers to select the most appropriate technology for their business. (Note that
in this case 'suppliers' are users of technology.)

This policy is motivated by an economic argument. A government-led technology
transfer programme is, in effect, intervention in the free market. The economic case
for government support of any such action must be that there is some kind of failure
of the free market to deliver an optimum product-price combination to end-users.
However, a 'perfect' market requires 'perfect information'. It is not too difficult to
make a case here that those operating in this business do not have 'perfect information'
about the latest technological developments.
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3 Theory

A study was performed of the principles of technology transfer, so as to inform
those in government responsible for establishing any initiative [4]. The study identified
some of the parameters to be considered in such an initiative, which were then used
to guide the selection of technology transfer mechanisms.

3.1 The role of technology transfer in innovation

Technology transfer is implicitly part of technologically fuelled industrial innovation.
Note - innovation - the putting to work of new developments, which is distinguished
from their invention.

Taken literally, technology transfer is the actual transfer of the technology - the
adoption by organizations of technology developed elsewhere, whether in academia
or industry. It can be achieved either by organic technological innovation within the
firm, or, for instance, by corporate acquisition of a company with new technological
capability.

The innovation process varies from sector to sector, at least in detail, because of
their different structures. There are also differences in the way in which technology
is transferred across different groups of sectors - again due to different industrial
structures [5]. However, in general, innovation is a consequence of diffusion of
knowledge. Moreover, von Hippel proposes that a "significant mechanism"
contributing to this diffusion is "informal know-how trading ", which is "essentially
a pattern of informal co-operative R&D. It involves routine and informal trading of
proprietary information between engineers working at different firms - sometimes
direct rivals. " [6]

Key players in this diffusion of knowledge are the industrial 'gate-keepers' [7].
These are the personnel in companies who have the external contacts with emerging
and prospective technologies, and who are respected by the decision-makers and
business managers, inside the company, who are able to use such technology
commercially. Such individuals will be familiar with trends in their application
sectors which are likely to influence the development of technology, either through
market pressure for technological development or through constraints on the nature
of such development coming from emerging regulatory changes or, again, the market.
'Gatekeepers' are able to filter ideas and information and promulgate them
appropriately. They are important nodes in a communication network which is itself
a vital part of technology transfer.

Technology transfer communication should be seen as two-way traffic. This is
important because it appears that in many sectors invention as well as take-up
innovation often originates with the industrial technology users [6]. Indeed, recent
research puts it more strongly: Successful technological change is more likely to be
market-led than science-led. " [8]
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3.2 Leaders & followers, small & large

Companies which embrace innovation - the 'leaders' - see it as a necessary investment,
while aware of the risks. And it is an ongoing investment, rather than a once-off
transfer of instances of presently available technology. "Companies who get there
first do not benefit from a lasting loyalty from customers. Successful innovation
means more than initiating a product or technique and bringing it to fruition. It
means constant improvement .... .[8]

However, many companies - the 'followers' - are not geared up to innovation.
They do not positively adopt this as their route to future wealth [9]. The view they
take is that it is sufficient, and even best for the shareholders, to come second - to let
someone else take the risks [10].

It is interesting that the present political climate is one in which emphasis is
placed on encouraging the economic growth of smaller companies. Perhaps
surprisingly, the evidence indicates that small companies are not noticeably more
innovative, on balance [11 ]. It is the large firms who are more likely to have their
own R&D activity, who are both easier to target and best equipped to take-up new
technology, and who can make a bigger dent in the overall industry culture. As they
are also a source of innovations ripe for diffusion elsewhere, they are an important
contributor to the technology transfer communication network. So, it would not
make sense to exclude such firms from any initiative.

3.3 Force or facilitate?

Any technology transfer initiative must be distinguished from the actual transfer
itself. Now, the role of a technology transfer initiative could have as its purpose
either the transfer itself, or the facilitation of the transfer.

At its most extreme, the former takes us back to the 'technology-push' approach,
in which somebody decides what should be transferred. What must not happen is
that some central decision-making committee should pick winners from the
technology-push supply side (even under the guise of 'consultation') and make
everyone use their preferred technology. After all, who would believe that a central
committee could be both sufficiently competent and unbiassed by either lobbying or
by having fixed ideas? And, anyway, however well it is done, any such prescription
will ultimately stifle innovation.

In this context, we should address the potential role of regulation as a means of
accelerating take-up of new technology. This is certainly possible, but it must be
handled very carefully and intelligently. The intention, once again, is not to enforce
the take-up of any particular technology. Such prescription is anti-competitive,
restricts trade, and stultifies competition, innovation, and technological development
-just the opposite effect, in the long term, to the effect which is sought.

Where regulation is necessary, Rothwell and Zegfeld refer to "the desirability,
where possible, of formulating regulations that allow maximum freedom in developing
technologyfor compliance." [7]. It is not too difficult to avoid constraining compliance
to particular technologies. It is at least as important, and usually much more difficult,
to frame regulation which does not presume certain classes of technological solution.
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On the other hand, if it can be done properly, then tough, technology-free,
targets can stimulate the development of a range of innovative solutions. It is
important that the targets are indeed tough, else the inclination is to adopt 'best
practice' targets, based on existing technology, which tend to be lowest common-
denominator targets, thereby, once more, inhibiting competition and innovation rather
than accelerating it.

Returning to the alternative of facilitation, any facilitation of technology transfer
might either directly support the explicit adoption of new technology (while not
prescribing what that should be, of course) or it can more indirectly attempt to
overcome - or undermine - some of the barriers to innovation.

The two major barriers are, it seems, a lack of awareness of new developments
and practice elsewhere - despite the availability of information for those that positively
look for it - and an inability to assimilate change, primarily because of shortcomings
in "the strategic ability of management to integrate externally acquired technology
into an overall business plan" [9]. It is fairly clear that a technology transfer
initiative could address the first of these. It is less clear that problems with the
strategic ability of managements lie within the scope of technology transfer. Indeed,
in the UK there is now a much more broadly-based attempt to inspire an innovatory
culture ([12], for example).

However, technology transfer actions of the right kind can help. It appears that
'perceived performance gap', compared with fairly close competitors, is a major
motivator for innovation. "The technological strategy [of business units within firms]
is to achieve the full potential of the product or process [around which they are
organised] in a way that at least matches the performance of rivals" [8] So information
about what is happening elsewhere in industry is at least as important as information
about technology. A technology transfer initiative can address both of these.

3.4 The players and their parts

In essence, the very much simplified technology transfer model in the
Buxton-Malcolm paper [4] comprises:

* awareness - coupled with 'interest'
* gatekeeping
* in-depth economic evaluation
* decision
* acquisition of technology and capability in its use

Again simplifying very much, we identify a number of types of individual in an
organization. They play different roles in each of these stages, and require different
types of information in order to perform properly:

"* senior-managers - the 'decision-makers' as they are often called, except..
"* middle management - who might well put this year's bottom line before

high-level highfalutin' ideas about change, and therefore, in reality, make the
decisions by default

"* gatekeepers
* engineers - 'the workers'
* researchers
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Note the important requirement for 'interest' in any awareness activity. This is
different from the salesmen's 'attention' (which is necessary but not sufficient). A
'perceived performance gap' referred to previously is one way to grab both the
attention and interest of decision-makers and managers.

After awareness, assuming interest is aroused, we need to make sure that
gatekeepers have access - and have preferably already had it - to the sort of technical
and economic feasibility which they can believe, so that when asked, they do not
block the introduction of technology simply because of a lack of information.

And then, assuming that interest is held, organisations will need convincing
information, from a reliable source, of the advantages and disadvantages of alternative
technologies.

Should the decision be to proceed, there will be a need for back-up; information
on supply of tools, training, and so on. This must all be available well in advance of
any decision though, since availability and supply will be considered during the
earlier deliberations of the organisation.

Note that the order of these stages is not necessarily linear, and, in particular,
awareness is often stimulated by gatekeepers.

4 The practice - mission & mechanisms

4.1 The mission statement

Having studied the theory, the mission statement for the proposed technology transfer
programme was established. This is:

"To achieve, in the supply of safety-related programmable electronic systems,
better informed application of safety engineering practices and better informed
choice and application of appropriate software technology."

4.2 A choice of mechanisms

Having identified different classes of information required by different people in the
diffusion of innovation, Table 1 was a first attempt to help to identify which mechanisms
provide support for which of the different aspects, discussed previously. It does not
purport to be complete, and the 'more-blobs-the-better' ratings are entirely subjective,
as a starting point for discussion.

Note that some of these mechanisms perform dual roles. For instance, collaborative
research, technology demonstrators, and 'application experiments' [13] are all means
whereby technology can actually be transferred into participating organisations. But
to others they are perceived as sources of information, accessed through the associated
dissemination activities.



152

Courtontoi t: Technical Awareness Economic L
feasibility feasibility ..W Ail it

for': M 12 M M M E ca

collaborative research UL eee 0e 0 00 00 0

mailshots f• o• oo •
press . 0 0 00 £
gatekeeper clubs aoo oo o S U
technical feasibility demos. o LU
economic feasibility demos. 0 "° sO L
technology centres U S oo U
journeyman schemes o .o £
case studies 0 o• oo o• oo £ 00

sector clubs 0go 06g o• 00o 0 oo o• o00 @0

hazard analysis forum see *so ° 0 0 0 " 00 U°°

conferences 0°0 0 0U ° "

centres of excellence 90 "°° 0* 0 LU
standards *0 * a

certification 0 0o 0 LU
teaching company scheme 0 0 * U

consultancy initiatives 0 0 0 0 0 U

management handbooks a 0 0 0 0 £
manager forums 0° 0o LL
internal communications 0 0 0 £
technology review 0.0.. U

directories * £
technology survey reports 0 0 0 0 0 U£
information centres 00 U
user-groups ooo o0 see U
summer schools o* U 01
acquisition, recruitment o0. ?

'KEY: R: Researchers; G: Gatekeepers; D: Decision-makers; M: Managers; E: Engineers

Table 1. Appropriat•nemss of various technology trusfer mechankiw

4.3 The Safety-Critical Systems Club

On the basis of all these considerations, and given the existence of the collaborative
research programme, we decided to combine the functions of gatekeeper clubs and
sector clubs in a 'community club' - the Safety-Critical Systems Club.

The primary aim of the club is to facilitate the flow of information between
practitioners within industry - both between peers and between 'leaders' and
'followers'. By enhancing awareness of current practices and of latest developments,
the club accelerates agreement on what constitutes best practice, and enables evaluation
of academic work.
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Since one of the aims is to achieve greater consensus among both individuals
and organisations, we must avoid proliferation of additional organisations, and of
activities which overlap or compete with their activities. The club is therefore
intended to undertake new activities only where necessary, and to encourage, stimulate,
and perhaps facilitate activities of existing technology transfer organisations who
may not be dealing with this subject at present, but who may be able to offer the
most appropriate forum. Such existing organisations include trade associations,
sectoral research associations, professional institutions, existing technology clubs,
and publishing houses.

Such a club is, cheap, simple, informal, and, we believe, highly cost-effective.
At the last count there were over 1600 members [14].

5 Effectiveness

The effectiveness of the club has yet to be proved. It is a requirement that all
government supported initiatives of this type be evaluated. For evaluation we must
develop some 'output measures' from the mission statement. This has yet to be
done, but for this kind of technology transfer activity we will, for instance, be
seeking evidence that organisations

"* are better informed about safety engineering and software technology
"* review their activities and technological needs more thoroughly
"* are better able to judge whether changes in their practice are desirable and
* make such changes, when they feel they are appropriate.
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Dependability: from Concepts to Limits

Jean-claud LapriC

LAAS-CNRS, Toulouse, France

Abstract

Our society istfaced with an ever increasing dependence on computing
systems, which lead to question ourselves about the limits of their
dependability. In order to respond this question, a global conceptual
and terminological framework is needed, which is first given. The
analysis of the limits in dependability which is then conducted
identifies design faults as the major limiting factor, a consequence of
which is the concluding recommendation of applyi a fault tolerance
approach to the improvement of the production process.

Introduction
Our society has become increasingly dependent on computing systems and this
dependency is especially felt upon the occurrence of failures. Recent examples of
nation-wide computer-caused or -related failures are the 15 January 1990 telephone
outage in the USA, or the 26-27 June 1993 credit card denial of authorization in
France. The consequences of such events relate primarily to economics; however,
some outages can lead to endangering human lives as second order effects, or even
directly as in the London Ambulance Service failure of 26-27 November 1992. As a
consequence of such events, which can only be termed as disasters, the
consciousness of our vulnerability to computer failures is developing, as witnessed
by the following quotation from the report Computing the Future: A Broader
Agenda for Computer Science and Engineering [COM 92]: "Finally, computing has
resulted in costs to society as well as benefits. Amidst growing concerns in some
sectors of society with respect to issues such as unemployment, invasions of
privacy, and reliance on fallible computer systems, ihe computer is no longer seen
as an unalloyed positive force in the society".

Faced with this situation, a natural question is then "To which extent can we rely on
computers?", or, more precisely, "What are the limits of computing systems
dependability?". Responses to these questions need a conceptual and terminological
framework for dependability, which in turn is influenced by the analysis of the

This wock was partially supported by the ESPRIT Basic Resaerch Action PDCS
(Predictably Computing Systems, project no. 6362)
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limits in dependability. Such a framework can hardly be found in the many

standardization efforts: as a consequence of their specializa'on (telecommunications,
avionics, rail transportation, nuclear plant control, etc.), they usually do not
consider all possible sources of failures which can affect computing systems, nor do
they consider all attributes of dependability.

The consideraions expressed in the above two paragraphs have guided the contents
of the paper, which is composed of two sections. The first section is devoted to the
main definitions relating to the dependability concept; those definitions elaborate on
the definitions given in [Lap 92a]. The second section deals with the limits of
dependabilty.

1 The Dependability Concept

1.1 Basic definitions
Dependability is defined as the trustworthiness of a computer system such that
reliance can justiiably be placed on the service it delivers. The service delivered by a
system is its behavior as it is perceptible by its user(s); a user is another system
(human or physical) which inter¢a with the former.

Depending on the application(s) intended for the system, different emphasis may be
put on different facets of dependability, i.e. dependability may be viewed according
to different, but complementary, properties, which enable the attributes of
dependabity to be defined

"* the readiness for usage leads to availability,
"* the continuity of service leads to reliability,
"* the avoidance of catastrophic consequences on the environment leads to

safety,
"* the avoidance of unauthorized disclosure of information leads to

confidentiality,
"* the avoidance of improper alterations of information leads to Integrity,
"* the ability to undergo repairs and evolutions leads to maintainability.

A system failure occurs when the delivered service is not up to fulfilling the
system's function. An error is that part of the system state which is liable to lead
to subsequent failure: an error affecting the service is an indication that a failure
occurs or has occurred. The adjudged or hypothesized cause of an error is a fault.

The development of a dependable computing system calls for the combined
utilization of a set of methods and techniques which can be classed into:

"* fault prevention: how to prevent fault occurrence or introduction,
"* fault tolerance: how to ensure a service up to fulfilling the system's

function in the presence of faults,
"* fault removal: how to reduce the presence of faults,
"* fault forecasting: how to estimate the present number, the future incidence,

and the cn suc of fault
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The notions introduced up to now can be grouped into three classes and are
summarized by figure 1:

"* the impairments to dependability: faults, errors, failures; they are undesired
- but not in principle unexpected - circumstances causing or resulting from
un-dependability (whose definition is very simply derived from the definition
of dependability: reliance cannot, or will not any longer, be placed on the
servie);

"* the means for dependability: fault prevention, fault tolerance, fault removal,
fault forecasting; these are the methods and techniques enabling one a) to
provide the ability to deliver a service on which reliance can be placed, and b)
to reach confidence in this ability;

"* the attributes of dependability: availability, reliability, safety,
confidentiality, integrity, maintainability; these a) enable the properties which
are expected from the system to be expressed, and b) allow the system quality
resulting from the impairments and the means opposing to them to be
assessed

AVAILABIUTY
-RELIABILITY

ATTRIBUTES - SAFETY
CONFIDENTIAUTY

INTEGRITY
MAINTAINABIUTY

FAULT PREVENTION
FAULT TOLERANCE

DEPENDABlUTY-- MEANS FAULT REMOVAL

FAULT FORECASTING
_•FAULTS

IMPAIRMENTS ERRORS
FAILURES

Fig - The dependability tree

1.2 On the Attributes of Dependability
The definition given for integrity - the avoidance of improper alterations of
information - generalizes the usual definitions (e.g., prevention of unauthorized
amendment or deletion of information [EEC 91], or ensuring approved alteration of
data [Jac 91]) which are directly related to a specific class of faults, i.e. intentional
faults, that is deliberately malevolent actions. Our definition e accidental
faults as well (ie. faults which appear or are created fortuitously), and the use of the
word information is aimed at not being restricted to data strictly speaking: integrity
of programs is also an essential concern; regarding accidental faults, error recovery is
indeed aimed at restoring the system's integrity. It is also noteworthy that our
definition can be interpreted by default in order to encompass subtle attacks against
integrity, such as preventing suitable data updates. Integrity is a prerequisite for
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availability, reliability and safety, but it may not always be so for confidentiality, as
in the case of passive attacks using covert channels or wire-taping.

Confidentiality, not security, has been introduced as a basic attribute of
dependability. Security is usually defined (see e.g., [EEC 91]) as the combination of
confidentiality, of integrity and of availability, where the latter are understood with
respect to unauthorized actions, whereas availability is not usually restricted to such
events, nor is integrity according to the above discussion; in addition, as noted in
[Gas 88], confidentiality is the most distinctive characteristic of security. A
definition of security gathering the three aspects of [EEC 91] is: the prevention of
unauthorized access and/or handling of information; security issues are indeed
dominated by intentional faults, but not restricted to them: an accidental (e.g.,
physical) fault can cause an unexpected leakage of information.
The definition given for maintainability - ability to undergo repairs and evolutions
- deliberately goes beyond corrective maintenance, which relates to repairability
only. Evolvability clearly relates to the two other forms of maintenance, i.e. a)
adaptive maintenance, which adjusts the system to environmental changes, and b)
perfective maintenance, which improves the system's function by responding to
customer, and designer, defined changes. It is noteworthy that the frontier between
repairability and evolvability is not always clear, for instance if the requested change
is aimed fixing a specification fault [Ghe 91]. Maintainability actually conditions
dependability when considering the whole operational life of a system: systems
which do not undergo adaptive or perfective maintenance are likely to be exceptions.

From their definitions, availability and reliability emphasize the avoidance of
failures, safety the avoidance of a specific class of failures (catastrophic failures), and
security the prevention of what can be viewed as a specific class of faults (the
prevention of the unauthorized access and/or handling of information). Reliability
and availability are thus closer to each other than they are to safety on one hand, and
to security on the other; reliability and availability can thus be grouped together
[Lap 92b, Jon 92], and be collectively defined via the property of avoiding or
minimizing the service outages. However, this remark should not lead to consider
that reliability and availability do not depend on the system environment: it has
long been recognized that a computing system reliability/availability is highly
correlated to its utilization profile, be the failures due to physical faults or to design
faults (see e.g., [lye 82]).

The properties enabling the definition of the dependability attributes may be more or
less emphasized depending on the application intended for the computer system
under consideration. For instance, availability is always required, although to a
varying degree depending on the application, whereas reliability, safety,
confidentiality may or may not be required according to the application. The
variations in the emphasis to be put on the attributes of dependability have a direct
influence on the appropriate balance of the means to be employed in order that the
resulting system be dependable. This is an all the more difficult problem as some of
the attributes are antagonistic (e.g., availability and safety, availability and
confidentiality), necessitating that tradeoffs be performed. Considering the three
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main design dimensions of a computer system, i.e. cost, performance and
dependability, the problem is further exacerbated by the fact that the dependability
dimension is less mastered than the cost-performance design space [Sic 921.

The discussion conducted in this section is summarized on figure 2.

DEPENDABILITY

AVALADIU1YI CONOETUUWpj~
REUMUTY

iL

Fig= 2 - Relationship between the dependability attributes

2 Limits in Dependability
Dependable computing systems are specified, developed, operated and maintained
according to assumptions which are relative a) to the function(s) to be fulfilled, b) to
the environment where the computing system is to be operated (load, perturbations
from the physical environment, behavior of the operators and maintainers), and c) to
the faults which are likely to manifest, in terms of their modes and frequencies. The
achieved dependability is crucially depending upon the validation a) of the actual
system with respect to these assumptions, b) of the assumptions themselves with
respect to reality, and, recursively, c) of the assumptions of the validation itself
(e.g., criteria according to which fault-removal is conducted). Limiting factors to
dependability can thus originate from a variety of sources, due to inadequacies of the
development-operation assumptions, or to imperfections in the validation of the
system and of those assumptions.

Dealing in details with all the above issues is clearly out of reach, all the more as
those issues are in fact closely related. In the sequel, we discuss the relationship
between function and failure, we investigate the effectiveness of fault tolerance with
respect to various types of faults, and we examine the distinction which has to be
performed between the dependability which is actually achieved and the estimated
dependability.

2.1 Function and failure

The function of a system is what the system is inrendedfor [Kui 85]. The function
is usually first described, or specified, in terms of what should be fulfilled regarding
the system's primary aim(s) (e.g., performing transactions, controlling or
monitoring a plant, piloting an airplane or a rocket). When considering safety- or
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security-related systems, this description needs to be supplemented with what should
not happen (e.g., the hazardous states from which a catastrophe may ensue, or the
disclosure of sensitive information). Such a description may in turn lead to
specifying additional functions that the system should fulfill in order to reduce the
likelihood of what should not happen (e.g., exhibiting a fail-safe behavior or
authenticating a user and checking his/her access rights).

The description of a system's function(s) can be performed at various levels of
details, according to several means of expression, from natural language to
mathematics. A system may fail with respect to a given function, or with respect to
a given level of detail, and still comply with the others.

Expressing a system's function(s) is an activity which is naturally conducted from
the very first steps of a system's development. However, we all know that
specifying a system's functions extends to the whole system's life, due to the
inherent difficulty of eliciting a system's requirements. If the largest amount of
effort devoted to this elicitation indeed takes place at the beginning of the system's
development, it does not end with what is traditionally called "requirements analysis
and specification" in life-cycle models such as the waterfall or the V models; this
elicitation practically continues during all phases of a system's development, and
during operational life as well: perfective maintenance is often performed in order to
correct what are finally specification faults, i.e. oversights, mistakes or omissions.
This remark is all the more important when considering failures: an unacceptable
behavior can indeed be detected as such from its deviation from complying with the
specification, but it may happen that it complies with the specification and is felt as
unacceptable by users, thus in fact uncovering a specification fault; leaving aside the
question of the consequences of such a situation, it can be said that in fact it helps
eliciting what the real function of the system ought to be. This type of problem
should not be minimized, for instance in advocating that systems generally exhibit
more frequently failures due to the subsequent phases of their development than
failures traceable to imperfections in the definition of their requirements (see e.g.,
[Gla 81]); however, besides the fact that severity has to be accounted for in addition
to frequency, this frequency argument does not apply to safety-related systems: a
consequence of the extreme care put into their design and realization is that
specification imperfections generally constitute a significant source of the problems
faced with in operation.

2.2 Effectiveness of fault tolerance
Before discussing the effectiveness of fault tolerance, let us stress that from our
definition - ensuring a service up to fulfilling the system's finction in the presence
of faults, fault tolerance is a mean for providing a system with the ability to behave
as expected, be it fail-safe or fail-operational.

The imperfections of fault tolerance, i.e. the lack of fault tolerance coverage,
constitute a severe limitation to the increase in dependability which can be obtained.
Such imperfections of fault tolerance are due either a) to design faults affecting the
fault tolerance mechanisms with respect to the fault assumptions made during the
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design, the consequence of which is a lack of error and fault handling coverage, or b)
to fault assumptions which differ from the faults really occurring in operation,
resulting in a lack of fault assumption coverage, which can be in turn due to either
i) failed component(s) not behaving as assumed, that is a lack of failure mode
coverage, or ii) the occurrence of correlated failures, that is a lack of failure
independence coverage. The influence of a lack of error and fault handling coverage
[Bou 69, Am 73] has been shown to be such that it not only drastically limits the
dependability improvement, but that in some cases adding further redundancies can
result in lowering dependability (Dug 89]. Similar effects can result from the lack of
the other forms of fault tolerance coverage: conservative failure mode assumptions
(e.g., inconsistent, or Byzantine failure modes) will result in a higher failure mode
coverage, at the expense of necessitating an increase in the redundancy which can
lead to an overall decrease in the system dependability (Pow 92]; correlated failures
are known to defeat fault tolerance strategies based on the replication of identical
items, either because of a) common design faults, or of b) identical sensitivity to
workload or externally-induced perturbations [Hec 87].

Another significant source of limit in dependability are temporary faults. They have
long been recognized as constituting the vast majority of hardware faults, and the
prgresses in hardware integration can only emphasize this tendency (see e.g., the
field data from several sources in [Sic 92]). A direct consequence is that, although it
is not always so [Geb 88], emphasis should be placed in the design of fault-tolerant
systems on discriminating between temporary and permanent faults: the
misinterpretation of a temporary fault as a permanent fault results in an unnecessary
decrease in the available redundancies, thus in lowering dependability.

Temporary faults are not limited to hardware: the notion of temporary fault applies
to software as well. Although such a notion has been introduced a long time ago
[Elm 72], and more recent studies have shown that most of the software faults
present during operational life are temporary faults [Gra 86], the very notion of
temporary software fault is often felt as contradicting our perception of software. In
fact, if it is not arguable that the ultimate cause of software faults are present as
long as they are not fixed, it has to be recognized that most software faults
manifesting in operation in large, complex, software are subtle enough in order that
their activation conditions depend on equally subtle combinations of internal state
and external solicitation, so that they can hardly be reproduced. Stated in other
terms, the failure domain of temporary software faults can vary with the conditions
of execution of the software, and be a null space under most operating conditions.
Although it is generally recognized that software is the current bottleneck in terms
of dependability [Gra 90, Cra 92], fault tolerance approaches aimed at temporary
software faults have been paid little attention [Gra 86, Hua 93] when compared to
the work devoted to tolerating permanent software faults, which necessitates design
diversity [Ran 75, Che 78, Lap 90]. Because of the high cost of design diversity,
software fault tolerance is currently mostly limited to some safety-critical
applications [Vog 88] such as avionics, and, to a lesser extent, railway
transportation or nuclear plant monitoring. The main limiting factor of the
undeniable improvement in dependability brought about by design diversity is
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constituted by the unavoidable correlations between the software variants issued
from diversified designs [Eck 91], which are a form of lack of failure independence
coverae

This brief overview of the factors limiting dependability in terms of fault classes
would not be complete without mentioning the man-machine interaction faults,
resulting from inappropriate interactions. Their importance is not new, and is not
restricted to safety-critical systems [Toy 78, Dav 81], although they are generally
felt as a major source of failure in those systems, for the same reason as already
mentioning regarding specification faults, i.e. the extreme care put into their design
and realization. Recognizing that most of interaction faults are in fact design faults
of the system [Nor 83] should encourage the development of approaches for their
tolerance [Max 86, Rou 87].

Fault tolerance is not restricted to accidental faults, which have been dealt so far in
this section. Some mechanisms of error detection are directed towards both
intentional and accidental faults (e.g. memory access protection techniques) and
schemes have been proposed for the tolerance to both intrusions (i.e. intentional
interaction faults) and physical faults [Rab 89, Des 91], as well as for tolerance to
malicious logic (i.e. intentional design faults) [Jos 88]. However, fault tolerance is
far from being recognized as a viable approach to security issues, in spite of the fact
that the continuously increasing cost of failures attributable to intentional faults
clearly show that the current approaches, mainly based on fault avoidance (i.e. fault
prevention and fault removal), do not constitute a fully satisfactory answer.

2.3 Achieved dependability and estimated dependability
It is now widely admitted that performing dependability evaluation of hardware-fault-
tolerant systems without accounting for the lack of fault tolerance coverage can only
lead to grossly overestimated evaluations of dependability. However, it is
noteworthy that if error and fault handling coverage has been devoted a large
attention due to the ability of estimating it via fault-injection (see e.g. [Gun 89,
Arl 90, Cho 92]), it is not so for assumption coverage as it needs experience to be
accounted for in addition to fault-injection.

Regarding software reliability modeling and prediction, the vast majority of the
published material focuses on the development and validation phases. Much less
studies encompassing the operational phase appear in the open literature. As already
mentioned in the previous section, a clear tendency in computing systems is to see
software becoming the major source of failure; there is thus a growing need for
performing, during their validation, reliability evaluations of software systems in
order to forecast their (future) reliability in operation.

The current approaches to software reliability evaluation cannot satisfy this need.
The main reason lies in the fact that they consider products in isolation from the
process which produced them: the reliability predictions performed for a given
software either a) from its successive times to failure for reliability growth
modeling, or b) from its execution times without failures for statistical testing, can
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only be far below any reasonable reliability requirement (see e.g. [Par 90, The 91]
for statistical testing). In addition, those predictions usually (and hopefully) are also
far below what will be observed in operation (see e.g. [Kan 87, Gra 90]).
Considering that software systems produced from scratch are exceptions, and that the
current usual approach is rather to make evolutions from existing software, a logical
consequence is to enhance the predictions performed for a given product from data
relating to its validation with field data relative to previous, similar, software
products [Lap 92c]. The corner stone of the approach is clearly the notion of
similarity between the various generations of a software family; however, in
addition to the usually mentioned negative dissimilarities resulting from added
failure sources, we can expect positive dissimilarities to exist, resulting from
progress in the development and validation methods and techniques.

3 Conclusion
The discussion conducted in the previous section clearly shows that design faults
constitute the major limitation to dependability of computing systems, be they
fault-tolerant or not. This is not at all surprising: a computing system is a human
artifact and as such any fault in it or affecting it is ultimately human-made since it
represents human inability to master all the phenomena which govern the behavior
of a system. As a direct consequence, pushing forward the limits of dependability of
computing systems can only be done via improving their production process.

Improvements in the production process can indeed be noticed, when looking at the
evolutions between the successive editions of guidelines for the development and
validation of computing systems (a noticeably good example is the recent new
release of the guidelines for certifying airborne software, DO-178-B, as compared to
the previous release, DO-178-A). This is however a feedback loop which takes a
considerable amount of time in order to make profit of experience. Some shorter
feedbacks are currently being explored, as the previously mentioned work we are
carrying out on software reliability evaluation (Lap 92c], or the recently published
work on employing accumulated knowledge in software testing [Wil 92]. Both
examples relate to validation: they are aimed at improving fault removal and fault
forecasting, but they are not directly and explicitly concerned with the progressive
reduction of the faults created during the development and inserted in the developed
system before fault removal takes place. This is where the most effective feedback
loop should exist, which would be nothing else than applying to the production
process a fault tolerance approach: detecting the errors in the development,
diagnosing and removing the causes, i.e. the faults in the production process.

We have to be conscious that such an approach questions directly the very
organization of the producers: carrying out, and making profit of, the necessary
experience does not appear compatible with the project-oriented organizations which
currently prevail. It can only be hoped that the statistics on the continuously
growing costs of computer failures can be a strong enough incentive to moving the
organizational inertia. Let us just mention that the yearly computer failure cost is
now exceeding more than 10 Billions of Francs in France, both accidental and
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intentional faults included (and has been constantly larger than the profit of the
whole computing industry in France, including construction, distribution and
services), and is close to 4 Billions of Dollars in the USA for accidental faults.

Acknowledgements
I would like to thank the conference organizers for giving me the opportunity to
present the ideas contained in the paper. Thanks also to Alain Costes and Yves
Deswarte for their helpful comments and discussions.

References
Arl 90 J. Adat, M. Aguere, L Amat, Y. Crouzet J.C. Fabre, J.C. Laprie, B. Martins,

D. Powell, "Fault injection for dependability validation: a methodology and
some applications", IEEE Transactions on Software Engineering, Special
Issue on Experimental Computer Science, vol. 16, no. 2, Feb. 1990, pp.
166-182,

Arn 73 T.F. Arnold, "The concept of coverage and its effect on the reliability model
of repairable systems", IEEE Trans. on Computers, vol. C-22, June 1973, pp.
251-254.

Bou 69 W.G. Bouricius, W.C. Carter, P.R. Schneider, "Reliability Modeling
Techniques for Self-Repairing Computer Systems", Proc. 24th ACM National
Couf., 1969, pp. 295-309.

COM 92 "Computing the Future", Report of the Committee to Asses the Scope and
Direction of Computer Science and Technology of the National Research
Council, Communictions of ACM, vol. 35, no. 11, Nov. 1992, pp. 30.40.

Che 78 L Chen, A. Avizienis, "N-version programming: a fault-tolerance approach
to reliability of software operation", Proc. 8th IEEE Int. Symp. on Fault
Tolerant Computing (FTCS-8), Toulouse, France, June 1978, pp. 3-9.

Cho 92 G.S. Choi, R.K. Iyer, "FOCUS: an experimental environment for fault
sensitivity analysis", IEEE Trans. on Computers, vol. 41, no. 12, Dec.
1992, pp. 1515-1526.

Cra 92 R. Cramp, M.A. Vouk, W. Jones, "On operational availability of a large
software-based telecommunications system", Proc. 3rd Int. Symp. on
Software Reliability Engineering, Research Triangle Park, North Carolina,
Oct. 1992, pp. 358-366.

Day 31 E.A. Davis, P.K. Giloth, "No 4 ESS: performance objectives and service
experience", The Bell System Technical Journal, vol. 60, no. 6, July-Aug.
1981, pp. 1203-1224.

Des 91 Y. Deswarte, L. Blain, J.C. Fabre, "Intrusion tolerance in distributed
computing systems", Proc. 1991 IEEE Symposium on Resarch in Security
and Pivacy, Oakland (USA), 20-22 Mai 1991, pp.110-121

Dug 89 J.B. Dugan, K.S. Trivedi, "Coverage modeling for dependability analysis of
fault-tolerant systems", IEEE Trans. on Computers, vol. 38, no. 6, June
1989, pp. 775-787.

Eck 91 D.F. Eckhardt, A.IC Caglayan, J.C. Knight, LD. Lee, D.F. McAllister, M.A.
Vouk, J.P.J. Kelly, "An experimental evaluation of software redundancy as a
strategy for Improving reliability", IEEE Trans. on Software Engineering,
vol. 17, no. 7, July 1991, 692-702.

EEC 91 Information Technology Security Evaluation Criteria, Provisional
Harmonised criteria, Office for Official Publications of the European
Communities, June 1991.



167

Mlm 72 W.R. Elmendorf, "Fault-tolerant programming", Proc. 2nd IEEE Int. S"mp.
on Fault Tolerant Computing (FTCS-2), Newton, Massachusetts, June 1972,
pp. 79-83.

Gas 88 M. Gasser, Building a Secure Computer System, Van Nostrand Reinhold,
1988.

Geb 88 J. Gebman, D. Mclver, H. Shulman, "Faults with nonstationary observability
are limiting avionics R&M", Proc. 8th AIA/IEEE Digital Systems Avionics
Conf., San Jose, California, Oct. 1988, pp. 16-23.

Ghe 91 C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software
Engineering, Prentice-Hall, 1991

Gla 81 R.L Glass, "Persistent software errors", IEEE Transactions on Software
Engineering, vol. SE-7, no. 2, March 1981, pp. 162-168.

Gra 86 J.N. Gray, "Why do computers stop and what can be done about it?", Proc.
5th Symp. on Reliability in Distributed Software and Database Systems, Los
Angeles, Jan. 1986, pp. 3-12.

Gra 90 L. Gray, "A census of Tandem system availability between 1985 and 1990",
IEEE Trans. on Reliability, vol. 39, no. 4, Oct. 1990, pp. 409-418.

Gun 89 U. Gunneflo, J. Karlsson, J. Torin, "Evaluation of error detection schemes
using fault injection by heavy-ion radiation", Proc. 19th IEEE Int. Symp. on
Fault Tolerant Computing (FTCS-19), Chicago, June 1989, pp. 340-347.

Hec 87 H. Hecht, H. Dussault, "Correlated failures in fault-tolerant computers", IEEE
Trans. on Reliability, vol. R-36, no. 2, June 1987, pp. 171-175.

Raa 93 Y. Huang, C. Kintala, "Software implemented fault tolerance: technologies
and experience", Proc. 23rd IEEE Int. Symp. on Fault-Tolerant Computing
(F1CS-23), Toulouse, June 1993, pp. 2-9.

lye 82 R.K. lyer, S.E. Butner, E.J. McCluskey, "A statistical failure/load
relationship: results of a multi-computer study", IEEE Trans. on Computers,
vol. C-31, July 1982, pp. 697-706.

Jac 91 J. Jacob, "The basic integrity theorem", Proe. IEEE International Symposium
on Security and Privacy, Oakland, May 1991, pp. 89-97.

Jon 92 E. Jonsson, T. Olovason, "On the Integration of Security and Dependability
in Computer Systems", Proc. 1ASTED It. Conf. for Reliability, Quality
Control and Risk Assessment, 1992.

Jos 88 M.K. Joseph, A. Avizienis, "A fault tolerance approach to computer viruses",
Proc. 1988 Symp. on Security and Privacy, Oakland, April 1988, pp. 52-58.

Kan 87 K. Kanoun, T. Sabourin, "Software dependability of a telephone switching
system", Proc. 17th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-
17), Pittsburgh, Pennsylvania, USA, June 1987, pp. 236-241.

Kul 85 B. Kuipers, "Commonsense reasoning about causality: deriving behavior
from structure", in Qualitative Reasoning about Physical Systems, D.G.
Bobrow editor, MIT Press, 1985, pp. 169-203.

Lap 90 J.C. Laprie, J. Arlat, C. Beounes, K. Kanoun, "Definition and analysis of
hardware- and software-fault-tolerant architectures", IEEE Computer, vol. 23,
no. 7, July 1990, pp. 39- 51.

Lap 92a J.C. Laprie, ed., Dependability: Basic Concepts and Terminology, Springer-
Verlag, Vienna, 1992.

Lap 92b J.C. Laprie, "Dependability: a unifying concept for reliable, safe, secure
computing", Proc. 12th IFIP World Computer Congress, Madrid, Spain, Sept.
1992, vol. 1, pp. 585-593



168

Lap 92c J.C. Laprie, "For a product-in-a-process approach to software reliability
evaluation", Proc. 3rd Int. Symp. on Software Reliability Engineering,
Research Triangle Park, NC, Oct. 1992, pp. 134-139.

Max 86 R.A. Maxion, "Towards fault-tolerant user interfaces", Proc. 5th IFAC
Workshop on Safety of Computer Control Systems (SAFECOMP'86), Sarlat,
France, Oct. 1986, pp. 117-122.

Nor 83 D.A. Norman, "Design rules based on analyses of human error",
Communications of the ACM, vol. 26, no. 4, April 1983, pp. 254-258.

Par 90 D.L Parnas, A.J. van Schouwen, S.P. Kwan, "Evaluation of safety-critical
software", Communications of the ACM, vol. 33, no. 4, June 1990, pp. 636-
648.

Pow 92 D. Powell, "Failure Mode Assumptions and Assumption Coverage", Proc.
22nd IEEE Int Symp. on Fault-Tolerant Computing (FrCS-22), Boston, July
1992, pp.386-395.

Rab 89 M.O. Rabin, "Efficient dispersal of information for security, load balancing
and fault tolerance", Jounal of the ACM, vol. 36, no. 2, April 1989, pp. 335-
348.

Ran 75 B. Randell, "System Structure for Software Fault Tolerance", IEEE Trans. on
Software Engineering, vol. SE-1, no. 2, 1975, pp.220-232,.

Rou 87 W.B. Rouse, N.M. Morris, "Conceptual design of a human error tolerant
interface for complex engineering systems", Automatica, vol. 23, no. 2,
1987, pp. 231-235.

Sic 92 D.P. Siewiorck, R.S. Swarz, The Theory and Practice of Reliable System
Design, Digital Press, 1992.

The 91 P. Thvenod-Fosse, H. Waeselynck, "An investigation of statistical software
testing", Journal of Software Testing, Verification and Reliability, vol. 1,
no. 2, 1991, pp. 5-25.

Toy 78 W.N. Toy, "Fault-tolerant design of local ESS processors", Proceedings of
the IEEE, voL 66, no. 19, Oct. 1978, pp. 1126-1145.

Vog 88 U. Voges, ed., Application of design diversity in computerized control
systems, Springer Verlag, Vienna, 1988.

Wil 92 C. Wild, S. Zeil, G. Feng, "Employing accumulated knowledge to refine test
descriptions", Software Testing, Verification and Reliability, vol. 2, no. 2,
July 1992, pp. 53-68.

L . .. . . . . . . . . .. . . .



Session 5

VERIFICATION
AND

VALIDATION

Chair: B. Runge
STL Computer Automation, DK



The Rigorous Retrospective Static Analysis
of the Sizeweli 'B' Primary Protection

System Software

N J Ward
TA Consultancy Services Ltd

Farnham Surrey, England

1. Introduction

Siznwell 'B' is a Westinghouse designed Nuclear Pressurised Water Reactor (PWR)
currently being built in Sizewell, Suffolk in the UK. It possesses two diverse
protection systems whose role is to provide an automatic reactor trip when plant
conditions reach safety limits and to actuate emergency safeguard features to limit
coseqluenes of a failure condition.

The Primary Protection System (PPS) is a microprocessor based system developed
by Westinghouse in general agreement with EEC 880 [1]. The PPS is supported
by a nn-compute based Secondary Protection System (SPS), based on Laddic
technology, developed in the UK by GEC. However, despite the presence of the
SPS, the software within the PPS is considered to be 'safety critical' since the PPS
on its own is required to meet an integrity requirement of 104 failures per demand.

The UK Nuclear Installations Inspectorate (Nil), the regulatory body responsible
for certificating the station, have two main criteria for software based safety
systems, namely excellence of production and independent assessment. The rigour
of each of these is required to be consurate with the level of criticality and
safety depedence of the software.

As a result of this requirement for independent assessment, Nuclear Electric, the
utility responsible for Sizewell 'B', have had a range of assessments conducted on
the PPS, independent of the equipment manufacturer. One of the main activities
is the use of the static malysis tool MALPAS to rigorously verify the software
against its specifications.

2. Scope of Independent Assessment Activities

The overall objectives of any rigorous independent software assessment are to
demnstrate, to a high a level as is practicable, that the object code in the PROMs
implemnts the user requmnts, correctly, completely, safely and without side
effects. However, with current software technology, no single activity is able to
demonste this to the required level of confidence. Hence a range of activities
are necessary, each providing assurance of individual steps in the software
development life cycle such that, when taken together, the independent assessment
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activities provide the required level of assurance that the last step in the process
meets the first.

On the Sizewell 'B' PPS five main activities are being conducted, as follows:
* -aiginertn CoiEfhnnatoy Analysis conducted by NNC Ltd, involves the

manual review of all specifications, from the system design requirements down
to the low level code specifications, and the review of all source code and data,
to ensure overall consistency and progressive implementation of the
requirements.

* indepmnduit Design Assessment conducted by Nuclear Electric's own team,
ensures that all essential system functional requirements, including design
principles derived from AGR reactor protection system experience, are correctly
incorporated into the System Design Specification and down through the
different stages of the software design.

"* MALPAS Analysis conducted by TA Consultancy Services Ltd, involves the
formal verification of the source code against its specifications and is discussed
in detail throughout the rest of this paper.

"* Object/Source Code Comparison conducted by Nuclear Electric's own
Independent Design Assessment team and discussed in detail in reference [2],
aims to eliminate the possibility of errors being introduced by the compiler and
linker, by formally demonstrating (again using MALPAS) equivalence between
object code in the PROMs and the source code from which it was generated.

"* Dynamic Testing conducted by Rolls Royce and Associates Ltd, involves the
conduct of an extensive series of tests (approximately 55000 randomly generated
test cases) on one of the four identical channels of the PPS.

In total these activities are expected to have involved around 250 man years of
effort, an ammnt equivalent to that spent by the software manufacturer in their own
development and verification work, by the time that the software is certificated at
the end of 1993. Although high, this level of effort is considered necessary, one
reasm being because the PPS software design pre-dates the practical application of
the latest formal software design methods. Consequently the secondary aim of the
static analysis of source code has been to impose formalism on the overall
development process....

The main aim of the MALPAS analysis of the software is to verify, as formally
as possible that the Sizewell 'B' software (source code) meets its specifications.
This verification encompasses both the manual comparison of the analysis results
against the design specifications and also the 'proof' of code against a mathematical
representation of the detailed design specifications. However, it is important to
appreciate from the above that, whilst the MALPAS analysis is the single largest
activity, it is still one of a number of independent assessment activities which, taken
together, are intended to provide comprehensive coverage and maximise confidence
in the safety of the software.

3. Background to MALPAS Analysis

In 1988, following consideration of the activities necessary to demonstrate
correctness of the PPS software, Nuclear Electric concluded that analysis methods
were required which could demonstrate conformance with specifications and give
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high levels of confidence in freedom from errors. It was considered that dynamic
testing on its own would not be able to give the required level of confidence
because of known limitations of testing, such as the inability to achieve complete
path coverage on any non-trivial piece of software. These same concerns had been
addressed a few years previously by the UK Ministry of Defence and it was
therefore decided by Nuclear Electric to follow the same approach adopted by the
MoD, namely to use techniques known as Static Analysis.

The tool chosen by Nuclear Electric for the work was MALPAS [3] which itself
originated from the UK MoD research in the 1970s and 1980s. MALPAS was 1
chosen because it provided the level of formal analysis considered essential and was

considered to be the tool most suited to retrospective analysis of code that has not
been developed with formal verification in mind. The tool consists of three main
sets of analysers, namely the Flow Analysers, the Semantic Analyser and the
Compliance Analyser, each of which is able to provide a progressively more
rigorous verification of the code against its specifications. It was Nuclear Electric's
decision, right from the beginning, that all the MALPAS analysers should be used
on the PPS software, with the emphasis being on the Compliance Analyser.

4. PPS Software Description

The Primary Protection System consists of four identical guardlines (channels),
physically and electrically separated from each other, which perform coincidence
(2 out of 4) voting to determine the need for action. Each guardline contains a
number of sub-systems, providing facilities such as reactor trip, communications,
engineering safety features, and auto test. Each subsystem comprises a general
purpose 'host' processor and a number of slave processors. The host processor
performs the unique functions required by the subsystem and is supported in this
by the specialised slave processors which provide standard functions such as
communications, analogue data acquisition and diagnostic monitoring.

The PPS software is primarily written in PL/M-86 with some ASM86 and small
amounts of PLiM-51 and ASM51 variant code. In total there are approximately
100,000 lines of unique executable code with a typical host processor containing
40,000 lines of source code and a typical slave processor 10,000 lines. The
software is highly modular and has been written mostly as 'general purpose'
reusable software providing a range of common functions, configured through the
use of configuration data. There is a relatively small amount of applications level
code providing the particular functionality of the protection system.

The software is developed from two levels of specifications, namely a Software
Design Requirements (SDR) which is a high level specification of the required
functionality of each section of the code, and a Software Design Specification
(SDS) which describes how the functional requirements are met by the design.
Both of these sets of specifications are written in 'natural language' (American
English). The SDS includes details of the precise functionality of each program
section, and also contains data flow tables providing details of all program section
variables and inputs and outputs.
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5. Overview of MALPAS Analysis Process

The analysis of the PPS software is conducted on a procedure-by-procedure basis
in a bottom-up manner. That is to say that the analysis commences with those
procedures that call no others and then progresses up the call hierarchy until the top
level applications code is reached. All the MALPAS analysers are run on each
procedure and the results verified against the two levels of specification. The
higher level specification (SDR) is taken to be the primary document against which
the code is verified, with supporting information provided by the lower level SDS.
All of the code that can be accessed during on-line operation is being subjected to
MALPAS analysis, irrespective of the perceived criticality of individual sections
of code within the system.

The analysis process has not changed in concept since the work began at the start
of 1989. However, the detail of how the work is conducted has changed
substantially both as experience has been gained over the years and with the
progressive increase in the size of the analysis team. The following sections
discuss various aspects of the analysis process.

6. Translation

It is necessary for source code to be translated into MALPAS's own input
language, known as IL, before analysis can take place. IL is a strongly typed
language with many features similar to those of Ada. One feature in particular,
similar to Ada packages, is that all IL procedures comprise separate bodies and
specifications (known as PROCSPECs). The advantage of this is that, following
the analysis of the procedure body, all that is required for analysis of calls to that
procedure is the procedure specification. This feature greatly facilitates bottom-up
analysis.

As has been mentioned above, the majority of the code in the PPS is written in
PL/M-86 and an automatic translator to convert PL/M-86 into IL was developed
by TA Consultancy Services specifically for this project. Considerable care was
taken in the derivation of the mappings between PL/M-86 and IL to ensure that
they were a strictly correct representation of the semantics of the PL/M-86
language and that they were at an appropriate level of abstraction/precision to
facilitate analysis. The translator was also designed to produce a number of
checks, for example for exceeding array bounds or loop counter overflow, that
could be formally checked during Semantic and Compliance Analysis.

The translator takes an input PL/M-86 source text, typically a module, along with
other relevant inputs, such as PROCSPECs from previously analysed procedures,
and automatically produces an IL translation. Error and warnmg messages are
given where language features are encountered that the translator is unable to
convert to 1IL automatically. The analyst then has to take appropriate action,
checking the accuracy of the particular part of the translation or making suitable
m-uad -hang.

Pointers are one Pl/M-86 language feature that can cause such problems, firstly,
becaue there is no concept of point m. within 1IL and, secondly, because, they
represent a source of aliasing which contradicts IL's philosophy of all variables
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being distinct and disjoint with all assignments having no side effects.
Unfortunately PL1M-86 is a pointer-based language with the use of pointers being
essential for a number of operations. The most significant of these concerns the
passing of OUT or INOUT parameters to procedures which must be performed by
reference (ie pointers must be used to pass any item to a procedure that may be
modified by that procedure).

The solution adopted for the analysis is for all pointers to be 'dereferenced' (ie
the pointer replaced by the item pointed at) during the translation process.
Fortunately the use of pointers is fairly well constrained in the PPS software
(through the application of Westinghouse's coding standards) and most pointers are
used only at the procedure call stage and point to a single variable/memory
location. The translator is therefore able to automatically dereference the majority
of pointers used within the code. Those that the translator is unable to
automatically dereference (for example pointers to templates) are brought to the
attention of the analyst through error and warning messages and the analyst then
has to implement an agreed (and subsequently reviewed) manual translation.

7. Analysis Process

Every program section/procedure in the source code is subjected to the three main
stages of MALPAS analysis in sequence, with the following particular activities
being conducted under each one.

7.1 Flow Analysis

This involves the analysis of the flow of control, data and information through each
procedure, in particular:
"* Control Flow Analysis The verification of safe control flow through each

procedure (eg ensuring the absence of multi-entrant loops and black holes) and
the confirmation that the code is well structured.

"* Data Use Analysis The analysis of the use of all parameters and variables within
each procedure to ensure that this use agrees with that detailed in the code
specifications (SDS) and to ensure that the usage is safe and in accordance with
general software engineering good practice rules.

* Info--atio Flow Analysis The analysis of all dependencies between input and
output parameters for each procedure to ensure that these a~ree with the code
specifications (SDR/SDS), and the identification of redundant statements.

7.2 Semantic Analysis

This analysis involves the confirmation both that the functionality of the code
conforms with the specifications (SDR and SDS) and is reasonable from an
egineering knowledge of the system. The MALPAS Semantic Analyser converts
the (potentially confusing) sequential logic of the code of each procedure into a
clearer parallel form, giving a precise mathematical relationship between inputs and
outputs for each path through that procedure. The analyst is then able to check the
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detailed semantics of every path through the program section and manually compare
this against the specification to verify one against the other.

7.3 Conplance Analysis

The purpose of the Compliance Analysis is to obtain the highest level of confidence
in the correctness of the software by formally verifying the code against a
mathematical specification. Specific objectives are to demonstrate that the code of
each procedure:
* conforms to the functional aspects of its specification (SDR, supported by SDS),
* respects any state invariants
"* performs its specified functions without corrupting the computing environment

and without corrupting data owned by any other module or procedure
"* conforms to the static semantics of the language in which it is written

The MALPAS Compliance Analyser requires the specification to be represented
as PRE and POST conditions for each procedure, along with any necessary
ASSERT statements within the body of the code, and the analyser will then show
whether the code meets the specification. The analyser identifies any differences
between the code and specifications as a 'Threat', expressing this as a mathematical
expression which details the domain over which the code and the specification
disagree. When the code and specification agree the tool shows that the Threat is
false.

The Compliance Analysis is by far the most important part of the MALPAS
analysis of the PPS software and also involves the majority of the effort. This
effort is expended partly in the derivation of the mathematical specification and
partly in the provision of guidance to the tool to aid simplification of the Threat.
The analyst is also required to derive invariants for each loop, expressing these as
ASSERT statements, so that properties of each loop can be proven.

The first part of the Compliance Analysis work is the construction of the
mathematical specification from the natural language SDR and SDS. This work
represents a substantial challenge to ensure both correct interpretation of the
existing specifications and that the important functionality and properties are
modelled in the mathematical specifications.

Ideally the analyst should be able to define a high level abstract mathematical
specification from the SDR and then derive refinement detail from the SDS. For
example, a functional relationship could be defined between an output and
appropriate inputs, using information from the SDR, and detailed semantics can
then be defined (using an IL feature known as replacement rules - similar to OBJ
rewrite rules) from information in the SDS. In practice, due to the SDRs and
SDSs being at varying levels of detail and precision, the ideal is rarely possible and
analyst skill and judgement is required to derive the mathematical specification
from both specification documents.

The second, and most time consuming, part of the analysis is the use of
techniques to assist the Compliance Analyser in its demonstration of whether the
threat is false. MALPAS contains a powerful Algebraic Simplifier for simplifying
expressions but, like all such tools, it has its limitations, particularly with the
simplification of some forms of expressions. Analyst assistance may involve the
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re-writing of mathematical specifications into forms more amenable to
simplification, the use of replacement rules to define additional theorems or the use
of extra ASSERT statements. The derivation of a 'Threat False' statement is
therefore an iterative process, involving running the tool, assessing the Threat
condition and then making appropriate changes to reduce the expression on a
mibsequent nrn of the tool.

8. Ensuring Correctness, Consistency and
Reproducibility

Despite using an automatic tool for the rigorous static analysis, it can be
appreciated from the above description that substantial analyst skill and judgement
is involved in interpreting the tool's output and in deriving the mathematical
specifications. Because of this it is essential, given the size of the project, to
ensure that all analysts are performing the work to the same standard. It is also
considered important to ensure that all analysis is reproducible and could be re-run,
for example if a query was ever raised by the regulatory authority on a particular
piece of analysis.

Five main measures have been adopted by TA Consultancy Services to ensure that
these requirements are met. The first, perhaps obvious one, is that all work is
conducted within a defined quality system and to the requirements of BS5750
(IS09001). The second, related, measure has been the derivation of a detailed
'standards and procedures' document, approximately 200 pages long, which defines
in great detail precisely how the analysis is to be conducted. This document,
analogous to a coding code of practice for software development, is followed by
all analysts and ensures uniformity of approach.

The third measure is to ensure comprehensive recording of all aspects of analysis.
In addition to the MALPAS analysis results themselves, analysts are required to fill
out a series of forms to summarise the results and to record their interpretation of
the results, the background to their derivation of the mathematical specification,
their assessment of the conformance of the code and specifications, and details of
all anomalies.

The fourth, and possibly most important measure, is the conduct of peer reviews
of all analysis work. The main aims of these reviews are to ensure that the defined
processes have been followed for the analysis and to ensure that Compliance proofs
are well founded, that loop termination has been demonstrated and that replacement
rules are correct. In addition they help to distribute knowledge of different parts
of the PPS software and experience of the range of analysis techniques and to
ganeraly ensure consistency between analysts. The reviews are conducted on a
controlled set of results, using a series of checklists and review deficiency forms.

The final measure is the enforcement of strict configuration control of all
documents and analysis results, both in paper and magnetic media form. In terms
of computeOVAX)-4b d configuration control a rigidly defined manual system is
used involving controlled and frozen directories with a named librarian being the
only person authorised to move files from one status to another.



178

9. Technique Refinement

The analysis techniques used on the project have been continuously refined and
improved during the 41 years of the project. This has covered everything from
the forms on which the interpretation of the results are recorded (despite
streamlining, there are still perpetual complaints about too much papecwork) to the
format and depth of reviews. However, changes in the techniques used are
necessarily slow to be implmnted, firstly to ensure compatibility with the analysis
of lower level procedures, and, secondly, because of the inertia and diverse views
of such a large team.

The area in which there has undoubtably been the most improvement is
Compliance Analysis. Substantial experience has been gained in the most effective
ways to express mathematical specifications in order to be able to demonstrate
conformance with the code. Numerous technical papers have been written
internally to provide a series of hints and tips to all analysts on how to resolve
particular problems that arise during Compliance Analysis, either in the expression
of the mathematical specification, or in the resolution of the Threat expression to
false.

It has also been of substantial benefit for TA Consultancy Services to themselves
be the developers and suppliers of MALPAS, as well as the users of the tool on
this project. Analysts have had access to the implementors of the tool and have
been able to obtain expert advice on the best way to represent specifications in
order to facilitate expression simplification. Furthermore, experience from the
analysis project has been fed into the development of the algebraic simplifier to
improve its performance with specific types of expressions, to the extent that speed
improvements in excess of two orders of magnitude have been made to the
Compliance Analyser in some areas.

One interesting aspect is that new techniques continue to be required even after
41h years. This is primarily because different areas of code are encountered that
present a new series of problems. One area that required considerable effort in the
past was the analysis of ASM86 code involving double-length arithmetic. Another
area where a whole range of new techniques has been necessary concerns the
analysis of the shared memory communication system used on the PPS. It is
possible that this could be the subject of a paper on its own at a later date.

10. Analysis Limitations

It is important to recognise that the technique being performed is Static Analysis
which, by definition, is concerned with the non-dynamic aspects of the software.
Although many dynamic and timing related aspects of the software are modelled
and analysed in detail during the MALPAS work, others are not if it is considered
more appropriate for them to be verified by other means. Where such cases arise,
notification is given to Nuclear Electric that the specific aspects have not been
verified statically and that other means are required.

The aspects not verified statically relate primarily to those concerned with real
time operation and with interaction with hardware. For example the checking of
a commuications protocol with requirements of 'waits' of specified lengths of time
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may be more appropriate through dynamic testing on the target hardware. This is
partly because testing of all paths through such procedures is likely to be possible
but, more importantly, because dynamic testing will effectively also provide
validation of the specification and will reveal whether the design actually works in

11. Reporting and Resolving Results

The only deliverables to the customer (Nuclear Electric) resulting from the
MALPAS analysis are comments detailing the anomalies (ic differences between
code and specifications etc) found during the work. All comments are provisionally
categorised according to their criticality by TA Consultancy Services prior to the
comments being reported to Nuclear Electric. The following five categories are
used for this reporting process:

Cat 1: Essential code change to address potential maloperation of the PPS
Cat 2: Specification or requirements change.
Cat 3: Code change to remove non-critical anomalies or to address necessary

improvements.
Cat 4: Comments for which no action is required
Cat U: Interim categorisation to be resolved at sentencing

This last category is intended to cover comments where the analyst has
insufficient information regarding the rest of the system's operation to be able to
determine the severity of the anomaly.

Following the reporting of provisionally categorised comments a sentencing
process is undergone between TA Consultancy Services, Nuclear Electric and
Westinghouse (often also held with the Nil in attendance). During the sentencing
process each comment is discussed and resolved and given a mutually agreed final
categorisation (using categories 1-4 above) which determines the corrective action,
if any.

12. Project Status and Results to Date

The MALlAS analysis work started in January 1989 and is scheduled to complete
at the end of October 1993. Because of the size of the analysis task and because
the 'production' version of the software was not going to be ready much more than
a year before the required certification date, the analysis commenced on 'pre-
production' versions of the software.

Obviously, there are re-analysis cost implications of analysing early software
versions and the analysis team has been growing to optimise the costs of the
analysis and at the same time meet the required timescales. In particular the
growth of the analysis team has been rapid since the start of 1992, when TA
Consultancy Services had a team of 15 people working on the task, to the present
time in May 1993 when the team has grown to in excess of 80 people working full
time (including managers, analysts and dedicated support staff).

Considering the results, in terms of numbers of anomalies raised, the latest
figures available relate to April 1993 at which time analysis had been completed
and comments sentenced for 55 % of the production version software. Just under
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2000 comments had been raised from the analysis of this software, a rate of around
one comment for every 30 lines of code. This rate compares well with other
'traditionally' developed and verified safety critical software on which TA
Consultancy Services have conducted similar retrospective MALPAS analyses.
After senteadg the majority of the comments (52%) were classified as category
4 (no action comment), 40% were category 2 (specification change) and 8% were
category 3 (non-critical code change). There were no category 1 comments.

The no action comments cover a wide range of raised anomalies, some of which
are suggestions for code or design improvements, for example to make code more
defensive, but which are considered not to justify code changes. Others may relate
to trivial specification deficiencies or points for clarification. Similarly the category
3 comments cover a wide range of instances where it has been considered necessary
to make changes. Some have been because of straightforward deficiencies such as
type mismatches at procedure calls and others relate to improvements in code
defensiveness.

13. Conclusions

The MALPAS Analysis work conducted on the Sizewell 'B' Primary Protection
system Software has shown the feasibility of conducting a rigorous retrospective
analysis on a large software system that has not been developed with this form of
analysis in mind. The tools, methods and techniques used for the work have been
shown to be very suitable but the costs of their use in such a retrospective manner
are high.

At a more detailed level the project has demonstrated the benefits of both
Compliance Analysis and of in-depth reviews of all work. During Compliance
Analysis, it has been found that the twin activities of deriving the mathematical
specifications and directing the tool to show conformance, results in both the code
and specifications being scrutinised in the minutest detail, thereby leading to the
identification of subtle but potentially significant problems.

The benefits of the reviews in terms of the consistency and checking that they
provide are considered to far outweigh their not insignificant cost (in terms of time
taken for the reviews and any necessary rework). Similarly with the Compliance
Analysis, although the costs of Compliance Analysis are high in absolute terms they
are low in relation to the costs of any potential software malfunction.
Consequently, the conduct of rigorous static analysis, including Compliance
Analysis, is considered to be essential for software within systems of the criticality
and potential failure consequences of the Sizewell 'B' PPS.

Whilst not claiming that the analysis provides a formal proof of the safety of the
software, the analysis does provide a formal verification that the source code meets
its low level and intermediate level specifications. The analysis has increased the
integrity of the software through code and documentation modifications that have
been made as a result of anomalies raised during the analysis. Furthermore,
through its rigour, the analysis has greatly increased confidence in the correctness
of the software and it is hoped that this, taken along with the four Independent
Assessment activities will greatly contribute towards a successful certification of the
software by the UK NIL.
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This paper describes a safety critical computer system used for
automatic train controL It has been developed during the last
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1 Introduction

In the past decade suburban public transportation has experienced an enormous rise
in popularity. In Switzerland, many existing railway companies are confronted
with the need of increased train capacity and train frequency.

As many of these networks consist of mostly single track lines and are built in
densely built areas, increasing the capacity of the existing lines is often the only
solution to suiting these demands.

Railway safety has reached a very high standard. One of the biggest remaining
safety problems today is the supervision of train drivers. The above mentioned
increased train speeds and traffic density of today's railroading leads to an
increased pressure on the train drivers and therefore to an increased chance of
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human euor. Also due to the mentioned factors the probability and consequences
of accidents in case of humau etroi have drastically increased.

Based on these circumstances four railway companies under co-ordination of the
Swiss Federal Bureau of Tansportation defined a specification for a new,
advanced automatic train control system.

2 System Overview

2.1 General System Requirements

A study of incidents in the past, and of the present safety situation led to a system
r equiremen specification. It is helpful for the general understanding of the
proposed solution to summarise the major requirements.

"* Train Vcod has to be supervised continuously, based on signal aspects, track
conditions and permitted train speed. This superision has to include the brake
curves in order to maintain a speed permitted by these sometimes overlapping
constraints at any time.

"* A speed of 10 km/h in excess of the permitted value has to be prevented at any
time.

"* Trains must be prevented from unauo departures in both directions as
well as from overrnning of signals at danger ( e.g. stop indication).

"* Signalled stops must be adhered to within a limit of 10 m.

" Disturbance of train operation has to be kept to a minimum. Apart from
entering train data prior to the first departure train crews must not manipulate
the system during train operations.

" A change to a less restrictive signal aspect has to be recognised immediately
by the system. The capacity of existing lines has to be utilised fully. This
includes the oeed profile given by track geometry.

" The proposed system has to be fail safe, e.g. a safety certification similar to
that for solid sta interlocking system is required.

As none of the currently produced ATC-systems fulfilled the given specification
nor had the capacity of getting modified up to an apppriate level it was decided
to develop a new system. This also allowed us to take benefit of the enonnous
advances in technology during last few years.
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2.2 System Functionality

The following paragraphs will give a short description of te functionality of the
ATC-system.

The proposed new ATC-systemn is used to supervise train movements according to
signal aspects and track conditions and to prevent any uathorised exceeding of
the given speed limits at any time.

It is based on a data base which contains a route map that describes the network of
a superviwd railway. This data base contains the track geometry ( distances,
gradient, permitted track speed, points, track arrangement etc. ), the location of
signals, level crossings etc. and general data like the braking characteristics of
vehicles etc..

This data base is stored in a data module on board of each vehicle. This module is
easily changeable in case of changes in die network data.

Signal indications and point positions of a certain area, usually a station, are
transmitted cyclically to any vehicle within this area. Individual addressing of
specific vehicles as well as communication from train to track is not necessary. A
pilot line was chosen as a transmission system but data radio or similar technology
could also be used.

Computers on board of the vehicles are permanently updating Utir position within
ft network data with the aid of wheel rotation encoders. Wheel slip gets
su essed by an algorithm similar to the oues used in wheel slip monitoring
systems. The position measurement is readjusted at certain locations with the aid
of passive synchronisation points. Their exact location is recorded in the data base.

The on-board computer of each vehicle permanently evaluates its route based on
the current position of the vehicle, the direction of movement, the data base and
the received point positions. It searches the route for speed restricting elements like
signals, track speeds, speeds over points etc. and calculates the maximum
permitted s at any moment ( Figure 1 ). If the actual speed reaches the
permitted value, a warning is issued to the driver requiring him to reduce the train
speed. When the speed exceeds the pennitted speed by a defined value (e.g. 5
kinh) the computer actuates the regenerative/dmostatic brake. As soon as the
speed is below the limit of the speed curve the braking is discontinued. In ft event
of a speed excess greater than what is considered tolerable (e.g. 10 kmn/h) the
computer actuates an emergency brake application. 7T1 latter should only occur if
a driver doesn't react properly to an issued warning and if the vehicle doesn't react
to the application of the regenerative/deostatic brake, whether due to insufficient
adhesion or with older vehicles because they are not equipped with a
regeerativ tatic brake.
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Temporary restrictions ( e.g. construction sites etc. ) awe popoganned into the
stationary computers and transmitted to the vehicles together with the signal
indications and point positions.

trck speed envetop (permument)

max. vehicle
* N monitored speed curves speed•,, --- (good Ibad brakes)

* - \ 'signal at'danger

M a

finare 1: Examples cl mouitored speed curves with ovbelapping restrictiofs

The actual system structure is shown In Figure 2. The stationary computer in the
station interlockng as welm as the computer on board of each vehicle are designed
with a 2 out of 3 structure.

Each sub-computer of the 2 out of 3 at contains the full system functionality
including all the necessary hafrdware and softwsre. While perfosming the,
functionality of the system the three sub-computers interchange input data and

final results of their caculations. In case of diffen between the results of the
three, the one with the differing data gets switched off by the two others. The
remaining sub-computers continue as a 2 out of 2 system. In case of an additional

failure, the system shuts down entirely. In the case of the stationary cmnputer this
meaits that no telegrams are transmited. In the case of the on-board computer this
leads to an aplcto of the emergency brake.

Thee is of course a large number of additional functions like emulation of the
existin ATP-system, special modes for depots or industrial spurs, shunting mode,
overriding of sigals at danger in case of an interlocking failure, exception
handling etc. but their description is neither needed for the general unestnig
of the systen design notr for the description of the verification and validation
process.
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3 Safety Aspects of the System Design

The descibed ATC-system includes cab signalling of the ismitted speed. At a
law stage of t installation and usage of the system it is intended hd rmove the
existing conventional signalling. Tha is leads to the s equireme for a fad safe
system design, as the correct oservation of tine side signals by thea driver can nolonger be assumed. Together with the required functionality, reliability and
redundancy, she following Safety concept was chosen.

A 2 out of 3 system structure is used to detect hardware failures and to give
the required level of tedancy. A data exchange between lie sub-computers on
allows evaluation of rie correct fetiontoing of ate hardware including all ftrdata input circuitry. This method is suprsd by additional self tests. Output
circuitry for safety re~levant outputs is designed based on conventional rules for
faig sale hardware ( relays etc. ). Otherwise. the use of hardware components
designed after the classical rules for faid safe hardware is wherever possible
avoided. This allows the usage of industry standard hardware in most
-II Ii , 1- a 1 and eases laser hardware upgrades.

Data trmanmission betwee track and tran is designed salting advantage of the
2 out of 3 system structure. Each of the three: sub computers in the interlockring
ganmma dam telegram including dam encoding. Thesn telegranms we
tranmitted by each of the tlhrm sub-comnputers in a cyclic manne. The on-
bowrd compterms rnquire the reception of a least two identical telegrams ftmn
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two different sources to accept the received data. This procedure tolerates the
transission of increct telegrams by one sub-computer. It is also immune
against the falificatimo of single telegrams into different but correctly
encoded telegrams.

9 The necessary correctness of the system software is ensured by the strict
application of the chosen norms and by rigid testing. This includes modem
testing methods and procedures like for example static software analysis and
path coverage analyses.

0 Data entry of safety relevant data like train characteristics is secured by the
chosen data entry procedure. This procedure includes the echoing of the
entered data after validation by the three sub-computers. This echo gets
displayed via an independent hardware channel for verification and
confirmation by the train driver. This procedure additionally allows the
detection of data distortion or hardware failures in the data entry channel.

0 The corretness of the route map is ensured with several indejendent
procedures. First, data collection is performed with the aid of a computer
based data collection software. This software ensures systematic working
procedures by forcing the user to generate and to update the data base
following well defined paths. Second, the data collection software performs a
whole set of data verification procedures. This includes boundary checking of
entered data elements and data consistency testing after data entry. The
software automatically generates indices for new data relnses to ensure the
exclusive use of valid data. Once a new version of the data base has been
generated a back transformaion software regenerates a route map for an
additional visual data verification.

4 Norms and Standards used for System Verification
and Validation

Any new development has to consider the requirements set by the opening of the
European Market to international competition. This includes of course norms and
standards reonred for verification and validation. One of the major problems in
this field is the current lack of hannonisaionof standards.

In several European countries, national railway companies and industry have in the
past developed local norms, standards or rulebooks. Some of these are based on
long term experience with conventional relay based technology or with electronic
hardware.

Some norms for electronc systems including microprocessors and software are
curently under development, but they follow different approaches and
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philosolhies. This depends ont the country from which they originate and on the
understanding and the definition of the term safety on which they are based.

A study was carried out to compare the currently used norms in Great Britain,
France and Germany with the ones used in Switzerland. The study also had a look
at the proposals in work in the different committees of the CEN/ENELEC. This
comprison showed that bigger differences between the philosophies of the
proposed standards still have to be overcome. As a result of the study, the
following norms were chosen as a base of the verification and validation plan:

"* the British norm RIA 23 [1], which was based on the Draft IEC SC65A WG9,
for the implementation of the safety analyses and the ri assessment,

"* the proposed DIN norm DIN V 19250 [2] for the evaluation of the required
safety level

* and the proposed DIN norm DIN V VDE 0801 [3] for the definition of the
further implementation.

In the mean time the work groups WGAI and WGA2 of the CENELEC committee
SC9XA, which is responsible for the proposal of a new norm, chose two IEC
papers [4], [5] as a base of their future standardisation work. These papers take
reference to the chosen DIN norms.

5 The Verification and Validation Plan

Based on the chosen norms a verification and validation plan was defined. This
was done in close co-operation with the Swiss Federal Bureau of Transportation,
which will be responsible for the final system approval. The verification and
validation plan covers the following topics:

"* project management

"* development

" commissioning

* mainteutance

* documentation

• configuration management.
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For each of the above mentioned topics individual chapters cover the following
topis

"* Norms and standards to be applied for each of the defined steps.

"* Definition of a detailed plan for the verification and validation of each step to
reach system approval.

"* Definition of the persons or offices responsible for the implementation,
verification and validation of each of the defined steps.

"* Definition of the responsibilities of each of the participating persons or offices
to perform the above mentioned steps.

Figure 3 shows as an example the proposed plan for the system development:

Proem Veifl o I t Vaidtion

ILaw Safety Analysis I IVu u & Vadation
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Figuare 3: Verirw~ation and Validation Pluan

Each step ( work flow ) of the development as shown in the plan above is verified
with the defined rules and according to the chosen norms of the verification and
validation plan and documented In an individual paer•. Each of these papers as

preented individually to the supervisomy authority for approval. This procedure
allows an early detection of disagreement about the contents of the safety
certification and also fast certification after final testing, even in the case of such a
fairly complex ATC-system.
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6 Examples of Verification Procedures

This chapter gives a more detailed look into two of the large number of diffMerent
areas of system verification. These examples got chosen to show the spectrum of
measures necessary to fully implement a verification and validation plan.

6.1 Example 1: Verification of the System Specification

he first example shows the safety analyses that were carried out to verify the
system specification. It is based on a fault tree analyses of the current operations at
the participating railway companies. The fault trees were verified with the
available accident statistics and with a review with railway experts from different
branches.

Figure 4 shows as an example a fraction of one of the fault trees.

1A2

spemi illbreuce bwso stuop

Figure 4: Example of Fault Tree Amalyses

The different possible accidaits deducted frem this fault tree analyses got
weighted, based on die probability of occuence of the differet cases leading to
these scidents and the scale of the damage that could likely resul. This
procedure is based on the model of nA 23 [1], which again is based on the Draft

IBC SC65A W09 141. It led to tables like the one shown in Figure 5.
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The norm DIN V VDE 0801 [3] cotains more deailed rules for the

__i __of h veificati and v o pl compaed to do _A 23 [1)

and gor dwd'or chosen as a basn for further steps. To allow this. a - --- f-nnatio
of the required safety level via DIN V 192.50 [2] got underaken. Some

.s ..io based on this norm had to be made. As the possible severity of
accidents with ns in suburban tfic is limited, casuropic events were defined

to corrspn to S3. The probability remote was assignecd to W2. The assumption
led with the definition of a frequent to permanent collective stay within the ,.
systems sphere to a safety reuiemn level 6.

With assumption on the possible effect of an addifimal safety system on the
prbaility and the resultin damage of accidents, the system specifcto was
veiid This verification also led to die definition of the required integrity level
for the system accoding to the chose nom [2].

6.2 Example 2: Software Ipleimentation
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As already mentioned each step ( work flow ) of the development as shown in the
%oreponding verification and validation plan is performed and verified according
to a reviewed and approved guideline. The guideline for software implementation
covers the following topics:

Definition of the chosen progranmming language ( in this case Modula 2 ). This
includes rules, restrictions and recommendations for the use of language
elements which could lead to difficulties in the verification of the code, like
pointers, variant records etc..

Definition of the structure and the look of source files to allow several
programmers to dsae code without the risk of misunderanding or miss-
interpretations due to personal style.

* Definitions for the naming and the marking of language elements like
variables, constants, subroutines etc. for the same reasons.

* Definitions for the required documentation of program code including style,
depth, volume etc..

* Definition of the procedures and tools used to verify the correctness of the
code including check lists. The tools used include for example: syntax check
of the source code including the above mentioned rules and restrictions, static
code analyses including software metrics and path coverage analyses including
the definition of the used tools and the registration of test cases and test
results.

7 Conclusions and Acknowledgements

The experience gained in the development of the described ATC-system in the last
three years is summarised in the following list:

* As long as there is no harnonisation and standardisation for the verification
and validation of computer based safety systems in railway applications in
Europe, a selection of the norms currently under development has to be made
individually for new projects. Once a hannoisation has been reached the
transition time for the application of the new norms will be very short
compared to the development cycle of a larger project. It is therefore advisable
to already today use norms that will probably closely conform to the new
norms. Existing norms are only applicable in some countries and usually
represent a country specific approach to safety. They are often not applicable
in other countries.
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* A verification and validation plan has to be defined, approved and followed
from the very beginning of a new development to avoid later problems, delays
and cost for system approval.

"* The experience shows that with the application of the above mentioned plan a
development can get carried out in a shorter time due to a permanent co-
ordination between developer, customer and supervisory authority.

"• The experience also shows that the application of the above mentioned plan
allows system validation at a significantly lower cost due to an early
involvement of the supervisory authority. Wishes and requirements for
changes can get respected at the appropriate level of the development cycle.

As a final acknowledgement the authors would like to express special thanks to the
Swiss Federal Office of Transport and to the participating railway companies,
which with their knowledge, experience and openness to new proposals made
significant contributions to the project.
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Confidently Assessing a Zero Probability of
Software Failure

Jeffrey M. Voas, Christoph C. Michael* Keith W. Millert

ABSTRACT

Randomly generated software tests are an established method of estimating soft-
ware reliability [5, 7]. But as software applications require higher and higher
reliabilities, practical difficulties with random testing have become increasingly
problematic. These practical problems are particularly acute in life-critical appli-

cations, where requirements of 10-7 failures per hour of system reliability trans-
late into a probability of failure (pof) of perhaps 10- or less for each individual

execution of the software [4]. We refer to software with reliability requirements
of this magnitude as ultra-reliable software.

This paper presents a method for assessing the confidence that the software

does not contain any faults given that software testing and software testability
analysis have been performed. In this method, it is assumed that software testing

of the current version has not resulted in any failures, and that software testing
has not been exhaustive. In previous publications, we have termed this method

of combining testability and testing to assess a confidence in correctness as the

"Squeeze Play" and "Reliability Amplification," [15, 13] however, we have not
formally developed the mathematical foundation for quantifying a confidence that

the software is correct. We do so in this paper.

1 Introduction

The probability of failure of a program is conditioned on an input distribution.
(Another term for an input distribution is "operational profile" [14].) An input

distribution is a probability density function that describes for each legal input

the probability that the input will occur during the use of the software. Given

an input distribution, the probability of failure (pof) is the probability that a

random input drawn from that distribution will cause the program to output an
incorrect response to that input.

Software reliability is defined as the probability of failure-free operation of

the software in a fixed environment for a fixed period of time. Note the differ-
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Arlington, VA 22201 USA, (703) 276-1219, e-mail: jmvoasmothra.isse.gmu.edu.

t Correspondence address is: Department of Computer Science, College of William & Mary,
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ence between the definition for reliability and that for software probability of
failure: probability of failure is time independent. However, both reliability and
probability of failure are tied to a specific environment.

Even if ultra-reliable software can be in theory achieved, we cannot com-
fortably depend on this achievement unless we can assess its reliability in a
convincing, systematic, and scientific manner. As pointed out in [2], black-box
testing is impractical for establishing these very high reliabilities. In general,
by executing T random tests, we can estimate a probability of failure in the
neighborhood of 11T when none of the tests reveal a failure [3]. If the required
reliability is in the ultra-reliable range, random testing would require decades of
testing before it could establish a reasonable confidence in this reliability, even
with the most sophisticated hardware. Based on these impracticalities, some
researchers contend that very high reliabilities can not be quantified using sta-
tistical techniques [1]. In dismissing all possible statistical techniques because
of the practical problems with random testing, we think Butler and Finelli are
being premature, and this paper describes how a statistical technique in ad-
dition to random testing may be brought to bear on the problem of assessing
ultra-reliability.

Two purposes of software testing are establishing a reliability estimate and
finding software faults. When software does not fail during non-exhaustive test-
ing, there is good news and bad news. The good news is that we suspect that the
software no longer has gross faults. The bad news is that testing is no longer as
effective at estimating reliability or at uncovering the remaining faults (if they
exist).

It is disheartening to realize that it is more difficult to assess the reliability
of a program that has not failed than it is to assess the reliability of a program
undergoing some proportion of failures. Previous work has tackled the problem
of assessing the probability of failure of software that has not failed [3]. In this
paper, we consider a closely related problem using an approach that is distinct
from traditional testing. We are interested in the confidence that the software
is correct given that:

1. the program has not failed in T tests, and

2. we have a prediction of the minimum non-zero failure probability (from
testability analysis that has been performed on the program).

We agree that testing, on its own, cannot be used to establish ultra-reliabilities.
However, testing is not the only statistical technique possible for analyzing soft-
ware reliability. We believe that software testability, as a quantifiable measure
of software quality, can be used in conjunction with testing to assess reliability.

2 Software Testability Analysis

We now discuss "sensitivity analysis," a statistical technique complementary to
testing. Sensitivity analysis is one algorithm for performing testability analysis.
Used in conjunction with testing, sensitivity analysis may allow us to estimate

L . ii •i -•- u n nn,.°,=.,mnl n ui nmm ,, =. Ma,, .n.it
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reliability to a much higher precision than was possible with testing alone. A
preliminary model for doing this reliability assessment was previously presented
at [131.

Sensitivity analysis uses program mutation, data state mutation, and re-
peated executions to predict a minimum fault size [6]. The minimum fault size
is the smallest probability of failure likely to be induced by a programming er-
ror (with respect to the program, testing distribution, and simulated faults that
are injected). Sensitivity analysis does not use an oracle, and can therefore be
completely automated as implemented by the PISCES tool [18].

Testing establishes an upper limit on the software's probability of failure;
sensitivity analysis establishes a lower limit on the probability of failure that
is likely to occur. Together, the estimate and the prediction can be used to
establish confidence that software does not contain any faults.

Sensitivity analysis is based on separating software failure into three phases:
execution of a software fault, creation of an incorrect data state, and propagation
of this incorrect data state to a discernible output. This three part model of
software failure [8] will be referred to as PIE, for Propagation, Infection, and
Execution. In this paper we examine how to apply PIE to the task of finding
a realistic minimum non-zero probability of failure prediction, a, when random
testing has discovered no errors.

If a location contains a fault, and if the location is executed, the data state of
the execution may or may not be changed adversely by the fault. If the fault does
change the data state into a data state that is incorrect for this input, we say the
data state is infected. To predict the probability of infection, the second phase
of sensitivity analysis performs a series of syntactic mutations on each location
[91. After each mutation, the program is re-executed with random inputs; each
time the monitored location is executed, the data state is immediately compared
with the data state of the original (unmutated) program at that same point in
the execution. If the state differs, infection has taken place [121.

The third phase of the analysis estimates propagation. Again the location in
question is monitored during random tests. After the location is executed, the
resulting data state is changed by assigning a random value to one data item
using a predetermined distribution. (Research is ongoing as to the best distribu-
tion to use for this random selection. Current experiments use an equally likely
distribution over the range of values for this variable during random testing.)
After the data state is changed, the program continues executing until an output
results. The output that results from the changed data state is compared to the
output that would have resulted without the change. If the outputs differ, error
propagation has occurred.

Each phase produces a probability estimate based on the number of trials
divided by the number of events (either execution, infection, or propagation).
Execution, infection, and propagation must all occur to result in a failure at
this location. Thus the product of these estimates yields an estimate of the
probability of failure that would result if this location had a fault.

Sensitivity analysis is a new empirical technique. Since sensitivity analysis
does not require an oracle, it can be completely automated. Preliminary results
of the accuracy of the lower bounds produced by sensitivity analysis have been
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encouraging [9, 11, 101.
Sensitivity analysis produces 3 probability estimates for each location exam-

ined. In order to assess testability for a program or module, we must be able
to give one probability prediction: the "latent failure rate." The latent failure
rate is a prediction of the minimum non-zero failure probability that can occur
from any possible fault in the program given the fault classes that were sim-

ulated by sensitivity analysis. It is possible that an actual fault will induce a
lower failure probability than the latent failure rate. This occurs when the fault
classes simulated by SA do not include a particular fault, and that fault has a
lower failure rate associated with it than any of the faults that are simulated.
This is an unavoidable possibility that is incurred by all fault-based techniques;
fault-based techniques are only as powerful as the range of the fault classes that
they simulate. However, in the experiments cited above, such "surprisingly small
faults" were rare.

3 Hoeffding's Inequality

When we test a program randomly, success is defined by whether or not it per-
forms correctly on all tests. However, since test cases are chosen randomly, there
is a certain probability of drawing a test sequence that fools us into believing
that a "bad" program is "good." An extreme example is the case in which the

same test case is drawn N times, an unlikely but possible outcome of N draws
with replacement. Although we can honestly say in this case that we have per-
formed N random tests, in truth our testing has told us little about the quality
of the program.

Our analysis assumes that sampling is with replacement. However, it is nor-
mally not likely that we will draw the same test N times, and we might hope
that there is only a small probability of drawing any sort of grossly unrepresen-
tative set of tests. In fact, we can bound this probability as follows: we first
note that if the probability of a program failure is c, then the proh, bility that
it will fail in exactly k out of N tests is given by a binomial distribution:

( k( I )N-k.

Therefore, the probability that the program will not fail on any test is obtained
by setting k = 0; (1) then becomes (1 - C)N, the confidence bound that we have
already used. To state this result in mathematical terms, let 4, be an empirical
estimate for the probability of an event (in this case the event is a program
failure), which is constructed by dividing the number of times the event occurred

by the number of tests that were made. Also let v be the true probability of the
event. Then we have just shown that

Pr(1, _- V 1> C) _< (1 _ IE)N

given that 4, is 0. In other words, we have shown that the difference between
the true probability of failure and the estimated probability of failure is greater

than or equal to c only with probability (1 - ()N.
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In testability analysis we are faced with a problem that is similar to the one
we face in testing. We obtain an empirical estimate of the probability of some
event (in this case the event is no longer a program failure but a propagation,
an infection, or an execution) and we wish to know how likely it is that we have
drawn an unrepresentative sequence of tests, and thus obtained an estimate that
is actually far off the mark. We require an upper bound on

Pr(I 0 - v I>ý c)

that applies in the general case, and not just when 0 = 0. One such bound was
given in [17] and is commonly known as Hoeffding's inequality. It states that

Pr(I - v I> c) _< 22N

(Note that this is only an upper bound. Even though Pr(I 4) - v 1[ c) is a
probability and cannot be greater than 1, the right side of (2) can be as large
as 2. But if 2e-2c2N were, say, 1.6, then (2) would not tell us anything new,
because we already knew that Pr(I 4) - v 1Ž> c) is less than or equal to 1.0, and
hence less than 1.6. In that case, however, (2) would not give us any confidence
that 1 - v I was less than c, because, as far as we could ascertain by looking
at (2), the probability that I ) - v 1_> c could be as large as 1.0.)

For the purposes of quantifying our confidence in a latent failure rate, we
apply Hoeffding's inequality and get that

PrXD[I V-- V 1ŽC1] <_ 2e-2cN (1)

where

1. X is the space of mutants and perturbation functions used, i.e., X is the
space of programs based on P for which D was used during testing.

2. v is the true latent failure rate (unknown).

3. 4 is the predicted (empirical) latent failure rate found via sensitivity anal-
ysis.

4. E is the "fudge factor" that we set for how much we believe we have mis-
calculated 4.

For c, our intuition suggests the use of:

f -- 0 -- (10-1 • - (2)

Eqtuation 2 provides a fudge factor of one order-of-magnitude; although C is
independent of,0 it makes sense that c is near O)'s order-of-magnitude. As -2c 2 N
decreases, 2e- 2( N increases; this undesirable situation will be fully explained
later. For now, it is enough to know that c is the dominant argument in 2e-2e2 N,
and for a small i, N must be enormous for 2e-2e2N to be small. (Tables 1 and
2 show the relationship between the parameters of Equation 4.)
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4 The "Squeeze Play"

As we have explained in Section 2, sensitivity analysis provides an empirical
prediction of the minimum non-zero failure probability. And from testing we
have an upper bound, 0, on the probability of failure. If the upper and lower
bounds hold, we have bracketed the true probability of failure. Note that both
the prediction and estimate must be based on the input distribution D.

To understand what this prediction and this estimate tell us, it is often easier
to visualize these probabilities as fault sizes, meaning the upper bound can be
viewed as the largest fault that is likely to still be remaining after testing T
times, and the latent failure rate can be viewed as the smallest fault that is
likely to still be in the code. Again it is important to remember that we do not
know whether any faults exist in the code.

If we have done enough testing to be very confident that the true probability
of failure is less than 0, the smallest fault we expect to see, then we believe that
there are no remaining faults with respect to the fault classes that were simu-
lated during sensitivity analysis using D. Section 5 presents the mathematical
confidence that we have in this belief. This idea of increased testing to increase
our confidence that the true pof is less than 4 is termed the "Squeeze Play."
[15, 13]. The same effect can be realized by increasing 4 via either software
design-for-testability or removing those PIE estimates from the latent failure
rate that are driving 4 down. We can confidently ignore PIE probability es-
timates only when are sure that the location that they are associated with is
correct. After all, if we know there is no fault at a location, then we do not
care what the predicted ability of that location is to hide a fault from us, since
none is there. Such certainty for very small portions of code might be possible
in isolated cases using formal methods such as proof of correctness. Since such
proofs are more easily carried out for small code segments, the use of sensitivity
analysis may encourage future applications of formal techniques often dismissed
as impractical today.

5 Quantifying Absolute Correctness

Testing down to the level of 4 - c as well as performing testability analysis
for 0 are processes that are statistically subject to error. As we have shown,
Hoeffding's inequality provides a mechanism for quantifying this error.

Hamlet's probable correctness model [16] provides a mechanism for quanti-
fying how likely testing is to give us a confidence that the true probability of
failure is greater than 0:

Prob[Ei, > (0)] = (1 - (0)) T  (3)

where the T successful tests are selected according to distribution D. This
allows us to determine how much confidence we place in the results of testing
the program T times successfully.

The following equation gives us a lower bound on our confidence that the
software is correct. If the lower bound is less than zero, this means that we have

"L
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zero confidence.
Confidence[lD = O]XD = 1-

[(1 - (0))T + 2e-2eN] (4)

There are several aspects of Equation 4 that are noteworthy. First, in the
case where 9 < 4, the size of 4* impacts our confidence in correctness given fixed
T and N. Equation 4, then, suggests that just having a cross-over of 8 and 4*
is not enough; we also need a sufficiently large 4'. Second, as 4, decreases, the
required N to overcome a small c in order for 2e-2c2 N to be near zero becomes
virtually intractable. Thus if we are to have any confidence that our software is
correct we will need 2e-2 2 N to be near zero and (1 - (0))T to be near zero.

6 Conclusions

We contend that the preliminary results of experiments in software sensitivity are
sufficient to motivate research into quantifying sensitivity analysis. Although the
technique will likely require revision, the ideas that motivate sensitivity analysis
dispute the contention that random testing is the only method of experimentally
quantifying software reliability. We cannot guarantee that this new technique
will make it possible to assess reliability to the precisions required for life-critical
software. However, we do think it is premature to declare such an assessment
impossible. In the preceding sections we have argued that if testability predic-
tions can be quantified accurately, then it is plausible to combine random testing
results with testability results to assess reliability more precisely than is possible
with testing alone.

Both random testing and testability analysis gather information about po&-
sible probability of failure values for a program. However, the two techniques
generate information in distinct ways: random testing treats the program as a
single monolithic black box while sensitivity analysis examines the source code
location by location; random testing requires an oracle to determine correctness
but sensitivity analysis requires no oracle because it does not judge correctness;
testing that reveals no failures focuses on the possibility of no faults existing
while sensitivity analysis focuses on a "what if a fault exists in this location"
analysis. The two techniques provide independent data about how frequently
the program should fail if any faults exist.

This paper has primarily focused on the case where 0 < 4, because this is the
easiest situation in which to gain confidence in the software's correctness. And
as Tables 1 and 2 have shown, it is preferable that 0 < 4. Unfortunately, this
situation may be infrequent, and more frequently 0 > 0,. This situation makes
it almost impossible to provide a confidence in the absolute correctness of the
code. Two main strategies can push 0 and , closer: decreasing 0 by increasing
T, the number of tests; or increasing # by rewriting code locations that have
low sensitivity. Software design-for-testability is one avenue of research that we
are exploring that we hope will generally cause systems to have higher 8s.

One interesting side-effect of Equation 4 has revealed that not all cross-over
cases are equivalent in the derived confidence. This is because as c decreases
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Confidence[eD = OIXD f T N 0
0 0.00009 10 1000000 0.001 0.0001
0 0.00009 100 1000000 0.001 0.0001
0 0.00009 1000 1000000 0.001 0.0001
0 0.00009 10000 1000000 0.001 0.0001
0 0.00009 100000 1000000 0.001 0.0001
0 0.00009 1000000 1000000 0.001 0.0001
0.009955 0.009 10 1000000 0.001 0.01
0.095 0.009 100 1000000 0.001 0.01
0.632 0.009 1000 1000000 0.001 0.01
0.999 0.009 10000 1000000 0.001 0.01
1.0 0.009 100000 1000000 0.001 0.01
1.0 0.009 1000000 1000000 0.001 0.01
0.00995 0.09 100 1000000 0.0001 0.1
0.0951 0.09 1000 1000000 0.0001 0.1
0.632 0.09 10000 1000000 0.0001 0.1
0.999 0.09 100000 1000000 0.0001 0.1
1.0 0.09 1000000 1000000 0.0001 0.1
1.0 0.09 10000000 1000000 0.0001 0.1
0.999955 0.0009 10000 1000000000 0.001 0.001
0.604157 0.0009 10000 1000000 0.001 0.001
0.0 0.0009 10000 100000 0.001 0.001
0.236 0.0009 100000 1000000 0.00001 0.001
0.468 0.0009 200000 1000000 0.00001 0.001
0.5544 0.0009 300000 1000000 0.00001 0.001
0.585 0.0009 400000 1000000 0.00001 0.001
0.597 0.0009 500000 1000000 0.00001 0.001
0.604 0.0009 1500000 1000000 0.00001 0.001
0.604 0.0009 5000000 1000000 0.00001 0.001
0.9216 0.0009 5000000 2000000 0.00001 0.001
0.965 0.0009 5000000 2500000 0.00001 0.001

Table 1: Various Parameters for Equation 4
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Confidence[ED = 0]XD f T N 0 10
0.604 0.0009 100000 1000000 0.001 0.001
0.604 0.0009 200000 1000000 0.001 0.001
0.604 0.0009 300000 1000000 0.001 0.001
0.604 0.0009 400000 1000000 0.001 0.001
0.604 0.0009 500000 1000000 0.001 0.001
0.604 0.0009 1500000 1000000 0.001 0.001
0.604 0.0009 5000000 1000000 0.001 0.001
0.921 0.0009 5000000 2000000 0.001 0.001
0.965 0.0009 5000000 2500000 0.001 0.001
0.9844 0.0009 5000000 3000000 0.001 0.001
0.993 0.0009 5000000 3500000 0.001 0.001
0.997 0.0009 5000000 4000000 0.001 0.001
0.001 0.05 100 10000 0.00001 0.1
0.095 0.05 10000 10000 0.00001 0.1
0.393 0.05 50000 10000 0.00001 0.1
0.632 0.05 100000 10000 0.00001 0.1
0.632 0.05 100000 20000 0.00001 0.1
0.864 0.05 200000 10000 0.00001 0.1
0.950 0.05 300000 10000 0.00001 0.1

Table 2: Additional Parameters for Equation 4

(when 4) increases), the required N to overcome this deficiency becomes in-
tractable. Thus we have discovered a new argument for attaining a higher 4):
not only does a higher 4 require fewer T tests but a higher 4 means a higher c
which a greater confidence in 4) can be achieved with a smaller N. This is cru-
cial to the success of Equation 4, since a tiny N will almost certainly destroy any
chance of getting a greater than zero confidence in the software's correctness.
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Abstract

An approach to computer support organization of program testing
and analysis is considered. The approach is based on a semantic net
representation and usage of knowledge about a program. The pos-
sibilities and benefits of this approach application in different kinds
of program analysis and usage of the Prolog language as the tool
of such analysis implementation are described. Also the possibil-
ity of the approach spreading over different program representations
analysis and other problem areas, connected with the program en-
gineering, is indicated.

1 Introduction

It is known that important factors of software reliability and safety improve-
ment are program testing and analysis. As objects of studying and analysis may
serve such program features as interrelations of program objects, properties of
ones, control flow, data flow and structure, quality characteristics, results of
execution. Models traditionally used for such analysis are control flow graph
(c-graph), data flow graph, call graph. The offered approach envisages various
program features modeling by semantic nets and frame ones. Using of these
formalisms of knowledge representation allows to uniformly represent informa-
tion about program features which is necessary for different kinds of program
analysis. This information is represented by a set of facts - instances of rela-
tions (e.g. relations of calls, nesting, declaration, usage, location, precedence,
characterization, edge coverage), existing or arising under program execution
between entities of program (e.g. procedures, variables, constants, c-graph
nodes) or between ones and their characteristics (as examples of the latter may
serve "coordinates" of location in the program for procedures, "coordinates"
of declaration or usage for variables and arrays, quality metric values for pro-
cedures and programs). Facts of these relations simulate a state (features) of
program and form its model; program analysis actions are described by a set of
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appropriate rules and are based on construction and analysis of such models.
The main tool of this approach implementation is Prolog.

Different papers have influenced the approach formation. First of all these
are [1-5], which are based on selection and usage of relations between program
objects, [6, 7], in which some aspects of the Prolog usage for program analysis
were considered, and also [8], in which the possibility of graphs and graph
grammars usage for program representation modeling was given.

2 Representation of Knowledge about Program
Features

Discussing the modeling of program features it is useful to distinguish between
two levels of knowledge representation: "user" level, associated with descrip-
tion, and "system" level, connected with implementation. On the former level,
which corresponds to the requirements of convenience and simplicity of knowl-
edge representation, the using of a simple semantic net formalism is preferable,
on the latter level, which takes into consideration unambiguity of representa-
tion of program objects in the model, model size and other realization aspects,
frame net formalism is more adequate [9].

Semantic net formalism is based on the idea of knowledge representation
in the form of the oriented graph with named nodes and edges, where nodes
correspond to the objects of the problem area studied, and edges to relations
between them. There is a sufficiently large number of kinds of semantic nets.
Let us limit our consideration by non-homogeneous semantic nets, which con-
tain different, not only one kind relations, and simple (non-hierarchical) ones,
whose nodes don't have its own structure. From the logic view the main func-
tional element of semantic net (relation and two nodes connected by it) is
equivalent to predicate with two arguments. For this reason, semantic net may
be represented both in a graphic form and in a predicate form.

So, knowledge about some features of an imaginary Pascal program, con-
taining procedure sample, on the "user" level may be represented by the next
facts of semantic net relations (in infix predicate form):

sample uses-the-variable index
index is-declared-in-line 52
index has-type integer
index is-referred-to-in-line 56
sample has-length-in-lines 8
sample has-commentedness 0
sample has-complexity 2

Frame formalism, which also implies a choice of objects and relations of
problem area and in a certain sense may be considered as a particular case of
semantic nets, is oriented towards the representation of stereotype situations.
Frame is the composition of situation components (slots) having its own name
and value and united by a frame niame. As a slot value may be a name (in-
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dividual label) of a frame, then a frame set turns into a frame net. Like the
semantic nets frame ones may be expressed in graphic and symbolic forms.

So, on the "system" level semantic net presented above may be transformed
into the frame set (in a symbolic form)

(TYPE object index procedure sample declaration-line 52 type integer)
(REFERENCE object index line 56)
(CHARACTERISTICS procedure sample length-in-lines 8

commentedness 0 complexity 2).

Prolog program consists of facts, rules and queries. Facts fix the existing
of some relations between objects; rules set common dependencies for using
relations and allow to get new facts from ones taking place; queries require to
confirm the existence of the relation between concrete* objects or point out the
objects connected by a certain relation with other objects. Objects may be
represented by ones' lists. For example, the frame set given above is compactly
represented by Prolog facts (here and below syntax and terminology [10] are
used)

type (index sample 52 integer)
reference (index 56)
characteristics (sample 8 0 2),

relationships between frames are set by Prolog rules.
Program testing and analysis actions are described by Prolog rules. Program

state models are analyzed by execution of Prolog program, which includes an
appropriate set of rules and queries.

3 Contents and Ways of Forming of the Model

Apparently, treating program features modeling it is necessary to answer at
least three important questions: WHAT, HOW and WHY must be represented
in the model? The model reflected features of some really existing program is,
nevertheless, quite independent entity with own internal properties, physically
separated from modeling program, and itself is a possible object for investi-
gations. Given above, the explanations of the common idea of the approach
mainly answer a question HOW (how are program features represented in the
model?). Now let's try to answer a question WHAT (what program features
must be represented in the model?).

Purpose of the model is to reflect program features adequately to analysis re-
quirements (having as experience shows tendency to permanent growing). For
this reason, it has to contain maximum possible (but at the same time practi-
cally acceptable) volume of useful information about various program features.
Since Prolog allows to infer new knowledge from existing one, it is worthwhile
to reveal some "base" (necessary) volume of knowledge about a program. In
a certain sense contents of the model is some compromise between require-
ments of analysis execution effectiveness and memory economy. Intuitively it
is clear that from program analysis and testing view the model must contain
information about all program modules and their relationships (such as calls



210

and parameter transmissions), about all places and contents of program data
objects' declarations and usages, about control structure in a program, about
values of some metrics (e.g. of a complexity), about coverage of program paths
by tests, etc.

Information about program module relationships, data objects' declarations
and usages and control structure may be extracted from program source code
under its syntactic parsing; values of necessary metrics are computed on the
base of this parsing data; test run result data are obtained by instrumented
program execution.

4 Dependencies between Elements of the Model

To answer (naturally, not exhaustively) a question WHY (why just such kind
of information must be represented in the model?) let's profit by mathematical
apparatus of relations, based on the set theory.

Let A and B be two sets, A x B is their cartesian product, then any its
subset R C A x B defines some binary relation between elements of A and B.
Objects (elements) z and y are in a binary relation R that is denoted as zRy,
if (z, y) E R.

Let's as a base relation set take the next collection:

R l ("begins-at") C M x P,
R2 ("terminates-at") C M x P,
R3("is-directly-nested-in") C M x M,
R4("is-called-at") C M x P,
Rs("is-declared-at") C V x P,
R6("is-defined-at") C V x P,
R7("is-referred-to-at") C V x P,
Rs("is-undefined-at") C V x P,
Rg("starts-at") C G x P,
Rio("ends-at") C G x P,
R11("is-directly-preceded-to") C G x G,

where M, V, P, G are non-intersected sets of the model elements, and besides M-
elements represent program modules (relatively independent program entities,
such as head modules, subprograms, procedures, functions, etc.), V-elements
represent data objects (e.g. variables and arrays) of a program, P-elements rep-
resent points (placements) in a program, G-elements represent c-graph nodes;
sense of the relations is clear from its linguistic meaning. Not concerning con-
crete details of representation of program objects in the model, we shall con-
fine ourselves to the requirement of unambiguity of this representation and
regularity of P-elements for the possibility of its comparison (before-after, less-
greater), that may be ensured by their number nature.

On the base of relations R1 - R11 and also common order relations "not-
greater-than" (R 12 ) and "not-less-than" (R13 ), defined, in particular, on the
set P x P, with the help of appropriate operations under relations it is possible
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to define some auxiliary relations, promoting to the inference of existing depen-
dencies between model elements (and accordingly, between program objects).
So, with the help of relations

R14("is-used-at") g V x P,
Ris("is-nested-in") _ M x M,
Rle("belongs-to-the-module") g P x M,
R17("is-declared-in-the-module") C V x M,
Ris("is-used-in-the-module") C V x M,
R1 g("is-known-in-the-module") C V x M,

defining as
R14 = R6 U R7 U Rs,
R15 = R3UR3u u...=4
R6= ((R13 o R- 1) n (R12 o R,-)) \ (((R 13 o R-'1) (R12 0 R•l))o R-1),
R1 7 = Rs o R16,
Ris = R14 0 R16 ,
Rig = R17 U (R17 o R-),

where U, n, \ and o mean union, intersection, difference and composition
(product) of relations, respectively, Rk - kth power of a relation R, R-'1 -

the inverse relation to relation R, R+ - the transitive closure of a relation R,
the rule of the obligatory declaring of data objects used within a program may
be written as the restriction Ris C Rig, and the rule of the obligatory
usage of data objects declared in a program - as the restriction

R17 C R1s U ((Ris o R15 ) \ (R17 o R15)).

By similar manner through the use of the relations from the base collection
some useful auxiliary relations may be defined, in particular,

R20("belongs-to-the-node") C P x G,
R2i("precedes") C G x G,
R22("dominates-over") 9 G x G),
R23(" belongs-to-s-node-preceding-to-a-node-containing-the-point") C_ P x P,

and with their help it is possible to formulate some dependencies peculiar to a
program control and data flow. So, the rule of the obligatory initialization of
referring data objects may be expressed by the restrictions

(R o R; o R7 o R2o)flR2 C R22,
(R;1 oR 7)nR 23 C_ ((R; 1 o RP)nR 23) o ((Rj' oR 7)nR 23),

(it is assumed that undefinitions of data objects form separate c-graph nodes),
and the sufficient condition of assignments' nonredundancy - by the restriction

(R; I (Re u Re)) n R 23 9 ((•R 1  R7 ) nR 23 ) 0 ((R71 0 (R6 U Rg)) n R2 3 )

(in present case it is assumed that c-graph of a program consists of nodes-
statements, but not of nodes-blocks).

In the same way, by introducing new sets of model elements reflecting types
and the size of program data objects, and by determining relations on them
reflecting characteristics of program data objects and their use as formal and
actual parameters one can formulate the restrictions expressing requirements of
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correspondence of some program elements' characteristics in certain situations,
in particular, of correspondence of a type and length of formal and actual
parameters, of a type of left and right assignment parts, etc. As the such sets
may be suggested the sets, say, C, F, E, T and S representing, respectively,
constants, functions, expressions, and also possible types and sizes of program
elements, and as the relations on them supplementing the base collection -

the relations

R24("has-type") C (V UCU FU E) x T,
R2s("has-size") _ (V U C U F U E) x S,
R26 ,(_is-the-ith-actual-parameter-in-the-call-at") C (V U C U F U E) x P,
R2 7,("has-the-ith-formal-parameter") C M x V.

In the context of notions we introduced, many kinds of a static program anal-
ysis are reduced to checking of formulated above correlations between elements
of respective models.

Let us illustrate the possibility of Prolog-implementation of checking model
restrictions we introduced through the following example. Let relations of a
base set, specifically, R1 - R11 be determined in a Prolog-program (via setting
a respective number of facts). Then, for instance, the relations R14 - R19 are
determined as:

"z is-used-at y if (either x is-defined-at y
or (either x is-referred-to-at y

or x is-undefined-at y))
"z is-nested-in y if (either z is-directly-nested-in /

or z is-directly-nested-in z and
z is-nested-in y)

"z belongs-to-the-module y if y begins-at z and
z not-less-than z and
y terminates-at z1 and
z not-greater-than z1 and
not (yl is-nested-in y and

z belongs-to-the-module yl)
"z is-declared-in-the-module y if z is-declared-at z and

z belongs-to-the-module y
"z is-used-in-the-module y if z is-used-at z and

z belongs-to-the-module y
"z is-known-in-the-module y if either z is-declared-in-the-module y

or z is-declared-in-the-module z and
y is-nested-in z)

(relations "not-greater-than" and "not-less-than" in Prolog program is deter-
mined by means of rules using built-in arithmetic relation LESS, for example:

"z not-greater-than x
"z not-greater-than y if z LESS y
"z not-less-than z
"z not-less-than y if y LESS z),
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and checking of restriction Ris CZ R 19 , i.e. revealing of model elements (and
consequently, of program ones), not satisfying this restriction (in this case -
used, but not declared program data objects), is implemented by the query

which (z : z is-used-in-the-module y and not z is-known-in-the-module y).

5 SAIL System

The considered approach is the basis of a static and dynamic program analysis
in the SAIL system [11], which analyses programs written in Fortran-77 and
consists of three principle parts:

1) Fortran-program analyzer, making restricted parsing, construction of c-
graph, instrumentation, extraction of information from specially organized in-
troductory comments, cyclomatic complexity [12] and commentedness measure-
ment and on its basis - construction of program state net model analyzed (in
fact, it is a translator of syntax correct Fortran-programs into Prolog-models);

2) program state net models analyzer, providing the solution of different
tasks in program analysis;

3) monitor, which is a mediator between user and above analyzers and pro-
viding user-friendliness of the system.

Micro-Prolog [10] is the language of Fortran-program state models represen-
tation and analysis and the one of monitor implementation, and Turbo-Pascal
is the language used for Fortran-program analyzer implementation.

The implemented version of SAIL system defines infeasible parts of code
and latent cycles, reveals the usage of non-initiated variables and redundant
assignments, checks up the usage of the variables declared and declaration of
ones being used, reveals untested program parts and proposes available plans
of testing, and also provides a user with various common information about
program and its characteristics. So, it allows the users to get data about
size, number of entries and exits, complexity and commentedness by means
of requests including complex conjunctive ones setting different combinatorial
variants of program characteristics. An example of conjunctive request, formed
by user with the selection and refining of corresponding menu lines is "Point
the program module, which has length more than 100, complexity more than
20 and commentedness less than 10".

Besides, a user of SAIL has the possibility of asking the system different
questions connected with a program (in Russian), having simple or complex
(conjunctive) conditions. The question form is fixed, though it avails some
"liberties" (e.g. commas, prepositions, inflexional endings), which make it
closer to natural one. This possibility, which may make easier a task of program
maintenance, is based on user "understanding" of program representation at
his level and ensured by simplicity of this representation, by its likeness to
natural language clauses and easiness of such clauses parsing implementation
with Prolog.

Examples of questions with simple conditions are: What is rl? What type
does every variable have? Which module uses the variable index? What mod-



214 7
ules use arrays? Which variables are declared implicitly? In which line is every
array declared?

Examples of questions with complex conditions are: What type and length
does the variable index have? What type, length and dimension does every
array have? What module calls module sl and is called by module s2? What
variable has type real, length 4 and belongs to common block?

Form and contents of answers also are oriented to the support of natural lan-
guage dialogue. So, the answer to the question similar to the first of ones given
above will contain complete information about the program object mentioned,
for example:

rl is the variable of the module def, which
is a formal parameter,
is declared implicitly,
has the type real,
has length (in bytes) 4,
is defined in lines 4 14 20,
is referred to in lines 21 22,

rl is the variable of the module quad, which
is declared in line 40,
has the type integer,

and the answer to the second question may be the following:

in the module def.:
yes - character,
i - integer,
rI - real,
r2 - real,

While typing a user question the system offers him a number of convenient
prompts and while answering all the requests it makes the research area more
precise, allowing the user to choose the names of modules in which he takes
interest from submenu, or to denote a search mode in all program modules.

6 Possible Fields of the Application

Fortran, due to its specific features, is the language traditionally selected for
illustration of possibilities of program analysis systems [13], but most of the
analysis kinds implemented in SAIL system is common for a sufficiently large
number of programming languages, in the first turn, for ones of a procedural
type [14]. For this reason, many judgments given above are true for analysis of
programs written in other languages.

Program life cycle usually includes its specification, design, coding, testing
and maintenance. The principles of the approach, given above in application to
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program code analysis, naturally spread over other representations (specifica-
tion, project) analysis, used during the program life cycle. Besides, with such
representations models it is possible also to analyze program representations
interrelations in different stages of program life cycle for these interrelations
co-ordination support in the case, for example, of modifying some of them.

The main principles of this approach, which are based on semantic net model
construction in knowledge domain and on making available the intelligent inter-
face with the given model, can be used for organization of support of different
processes attendant to program making and development [15]. Such processes
are program development control, program configuration control, etc.

7 Conclusions and Future Work

The approach to computer support organization of program testing and anal-
ysis has been considered.

Main advantages of the offered approach are:
1) reflection of various program features in a uniform model and diversity of

supporting analysis kinds (including common ones for a sufficiently numerous
set of programming languages);

2) possibility of spreading the main approach ideas over the other program-
ming languages (by appropriate program analyzers' development) and over the
other (specific for every language) analysis kinds, and also over the support of
analysis of program representations differed from program code (i.e. specifica-
tion, design);

3) ensured by Prolog use, the possibility of inference of new knowledge about
a program from the basic one represented in the model, that allows, on the one
hand, to decrease (to some necessary minimum) a model size and, on the other
hand, to add new analysis kinds without model extending, in particular, to get
new quality appraisals when additional criteria are adopted;

4) based on the simplicity of knowledge representation at the "user" level,
similarity of semantic net facts to natural language sentences and well known
Prolog ability for such sentences parsing, possibility of organization question-
answering dialogue of user and system with the help of some subset of natural
language.

Works on the SAIL project are still in progress. Main directions of the
further developing of SAIL are:

1) increasing of the number of supporting programming languages (by ap-
propriate program source code analyzers development and making more precise
an analysis kinds totality for each concrete language);

2) increasing of the number of deciding tasks (by extending a set of the used
analysis kinds, testing criteria and coding style metrics);

3) increasing of the number of languages for communication with the system;
4) differentiation of the system for two directions, namely, its developing, on

the one hand, as analysis, testing and maintenance tool for programmers, and,
on the other hand, as means of teaching students basic technological aspects
of high quality program development.
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Abstract

Experience in safety-critical systems has shown that deviations
from assumed behaviour can and do cause accidents. This
suggests that the development of requirements specifications for
such systems should be supported with a risk analysis. In this
paper we present an approach to the development of robust
requirements specifications (i.e. specifications that are adequate
for the risks involved), based on qualitative and quantitative
analyses.

1 Introduction

During software development, the phase of requirements analysis provides the
system context in which the software requirements must be considered. This is a
fundamental issue for safety-critical systems because "safety" is essentially an
attribute of the system rather than just software. The work in this paper enhances
a methodology for the requirements analysis of safety-critical process control
systems [1] by incorporating techniques for the production of robust requirements
specifications, and by providing means to evaluate these specifications against the
system risks. A robust requirements specification is constructed by modifying a
specification to take into account violations in the assumptions upon which the
specification is based, and the possibility of specifications being violated due to
faults that might be introduced during later stages of software development.
System risk is related to the likelihood of a system entering into a hazard state, the
likelihood that the hazard will lead to an accident, and the expected potential loss
associated with such an accident [2].

Robust requirements specifications are obtained by conducting qualitative and
quantitative analysis of the requirements. Analysis aims to provide confidence
that the level of risk is acceptable. The qualitative analysis seeks to identify those
circumstances that can lead to violations of a specification, and subsequently take
the system into a hazard state. The quantitative analysis attaches probabilities to
the occurrence of the identified circumstances, in order to estimate the risk
associated with a specification. The risk estimates provide the basis for
conducting risk assessments, that compare alternative specifications and judge if
t! isk is acceptable. For the process of requirements analysis we adopt the
appi-oach of analysing the system from different perspectives and using different
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techniques [3]. This approach enables the extraction of different (and
complementary) information concerning the robustness of the requirements
specifications.

In summary, the enhancements proposed, in this paper, for the basic
methodology are as follows. For each level of abstraction at which the analysis is
performed, the assumptions are identified and recorded, and the fault analysis of
the specifications is conducted, with the aim of analysing the circumstances in
which the specifications are unable to maintain safe behaviour from the system.
In other words, apart from checking how good the specifications are, the aim is to
identify their weakness, and modify the specifications, in to make them more
robust.

The methodology and its enhancements will be presented as follows. The next
section describes a methodology for requirements analysis. Section 3 describes
how quality can be attained, in terms of risk, by performing qualitative and
quantitative analysis using viewpoints. Finally, section 4 contributes some
concluding remarks.

2 A Methodology for Requirements Analysis

In this section we overview a methodology for requirements analysis; a more
detailed discussion is given elsewhere [11. The methodology consists of a
framework with distinct phases of analysis, a graph that depicts the relationship
between the specifications produced during the analysis, and a set of formal
techniques appropriate for the issues to be analysed at each phase.

2.1 Framework for Requirements Analysis

The framework adopts the approach of separating the mission from the safety
requirements during an initial phase, and then partitioning the analysis of the
safety requirements into distinct phases. Each phase of analysis is focused onto a "

specific domain, where the identification of the relevant domains follows directly
from the components (i.e. operator, plant and controller) of a general structure
for safety-critical systems, and the relationship between the phases is dictated by
the interactions between these components. The analysis of the phases will take
into account non-standard behaviours of the entities of a domain; a basis for the
analysis is provided by establishing the standard, exceptional and failure
behaviours of the entities [4].

Conceptual Analysis. The objective of this phase is to produce an initial
statement of the aim and purpose of the system and determine those failure
behaviours of the system which constitute accidents. As a product of this
phase we obtain the Safety Requirements, enumerating the accidents. The
accidents are the basis for separating mission from safety issues. Another
activity to be performed during this phase is the identification of the modes
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of operation of the system; these are classes of states that group together
related operational functions.

"Safety Plant Analysis. During this phase the plant properties relevant to the
Safety Requirements, such as the physical laws and rules of operation that
govern plant behaviour and potential hazards, are identified. The outcome
is the Safety Plant Specification which contains safety constraints (conditions
over the physical process that are the negations of hazards modified to
incorporate safety margins) and safety strategies (schemes to maintain safety
constraints defined as a set of conditions, in terms of controllable factors,
over the physical process).

" Safety Interface Analysis. The objective of this phase is to delineate the
plant interface, and specify the behaviour that must be exhibited at that
interface. This phase leads to the production of the Safety Interface
Specification, containing the interface safety strategies (refinements of safety
strategies, incorporating properties of sensors and actuators).

" Safety Controd System Analysis. During this phase we establish a top level
organization for the control system in terms of the properties of its
components, and their interactions. This phase leads to the production of
the Safety Control System Specification, containing the control system safety
strategies (refinements of interface safety strategies incorporating the
components of the control system).

2.2 Safety Specification Graph

The specifications produced at the different phases of the requirements analysis,
are organized into a Safety Specification Graph (SSG). The structure embodied in
modes of operations can be reflected in the organization of the requirements
specifications by constructing a separate SSG for each mode. An SSG is a
directed acyclic graph, in which the vertices represent the safety specifications
(requirements specifications for safety) and the edges denotes relationships
between the specifications. For a system with p accidents, the SSG consists of p
component graphs. Each component graph is an evolutionary graph [51; the
evolution is related to the phases of the framework. At each phase a set of new
specifications is added to the graph of the previous phases, by connecting the
specifications to the terminal vertices (representing the specifications of the
previous phase) of the graph.

On completion (see figure 1) the top element of each component graph is an
accident (denoted by ACi) and is related to a set of hazards (HZij) that can lead to
it. Each hazard is related to the safety constraint (SCij) that negates the hazard,
and each safety constraint related to the safety strategies (SSijk) that maintain
the constraint. Then the safety strategies are related to their refinements into
interface safety strategies (ISSi,jk,i), and a similar relation is depicted for control
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system strategies (CSSij,k,l,m). When more than one strategy is related to a

specification of a previous level either the strategies are exclusive and a choice
has to be made in later stages of development to implement a single strategy, or
the strategies complement each other and all are needed to attain the confidence
required for the risk involved.

AC, ... AACp

H-I Z%2 HZ' q(i) -I Hr.i.(i)

/ 2 SCa~q(i)-1 S~q~i

5 il1.1 ISSil,2" ISSi2q(i),1,1 ISSiqQ),1,2

CSSui'lall, CSSLi,2.1.1 CSSi~q(i).l.l,1 CSS~qli),1,1,2

Figure 1. Example safety specification graph

The SSG of a system provides support in conducting a qualitative analysis and
provides the basis for a systematic approach to the modification of the
specifications. For the qualitative analysis, support is provided by establishing the
conditions (which follow from the edges of the component graphs) that must be
confirmed to ensure that the specifications maintain safe behaviour. A key
concern in modification is traccability, that is the ability to trace back from a
strategy to its origins and to trace forward to the strategies which are derived
from the strategy. Support for traceability is provided by constructing reachability
and adjacency matrices for the SSG. These matrices enable the localization of the
side-effects of a modification and identification of the relationships that must be
reconfirmed, thereby increasing the assurance that when changes are necessary
they will be complete and consistent.

2.3 Techniques for the Framework

For the application of formal notations and techniques, the approach adopted is
to employ notations in accordance with the characteristics of the system to be
analysed during the different domains of analysis. Within the context of the
framework, the relevant formalisms are grouped into two classes: descriptive and
operational. A descriptive formalism specifies the behaviour of a domain in terms
of axioms (representing system properties) over a model of the domain, whereas
an operational formalism is used to model the activities and interactions between
the entities of a domain. Real Time Temporal Logic and Timed History Logic are
examples of descriptive formalisms, and Statecharts and Predicate-Transition
Nets are examples of operational formalisms. The extent to which each class of
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formalism is applied in a specific domain depends on the level of abstraction at4| which the domain resides. At higher levels, descriptive formalisms should be
more prominent, however at the lower levels operational formalisms become
increasingly relevant.

In order to describe the behaviour of systems at different levels of abstraction, we
adopt an event/action model (E/A model) [1]. The main features of the E/A
model are that its primitive concepts (events, actions, states and the concept of a
time line) can be expressed in both descriptive and operational formalisms, and it
supports both discrete and dense time structures. When employed in the
framework, the models of system behaviour, constructed at the different phases,
are built on top of a common foundation providing support for verification
between the different levels of abstraction

3 Quality Analysis of Safety Specifications

One important factor in determining the quality of the specifications for
safety-critical systems is the risk analysis of the safety specifications; this aims to
determine if the contribution of the software to the overall system risk is
acceptable. In order to achieve this aim, a bridge has to be established between
the risk analysis of the system and the software. Within the context of the
methodology, this bridge is established through the SSG by relating the system
requirements to the software requirements. To perform the risk analysis, those
circumstances which can violate a specification, and cause the system to enter
into a hazard state, have to be identified and their probability of occurring
calculated. Once the risk is quantified we are able to judge whether the risk
associated with a specification is acceptable or not (risk assessment). If not, the
specification has to be modified or combined with other specifications in order to
reduce the risk. As a result, we obtain a robust safety specification which is a
specification that can be violated only within an acceptable risk. It should be
noted that the risk analysis presented in this section does not take into account
the consequences of an accident.

During the operation of the system, the occurrence of an initiating event (an
event which can lead the system into a hazard state) of an accident sequence [6]
distinguishes two kinds of system state: safe and unsafe state. An unsafe state is a
state which could lead the system into a hazard state in the absence of corrective
action and in the absence of subsequent initiating events. If a state is not an
unsafe state then it is said to be safc. These definitions ensure that a hazard
cannot occur subsequent to a safe state if no initiating event occurs. In terms of
the requirements specifications, the concept of initiating event refers to those
circumstances which can lead to the violation of a safety specification.

The quality analysis of the requirements, in each domain of analysis, is performed
from two different perspectives: qualitative and quantitative. The purpose of the
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qualitative analysis is to identify those circumstances which can violate a
specificatioit, and analyse the impact of these violations upon the safety of the
system. These circumstances are related to the violation of assumptions upon
which a specification is based and to the violation of certain conditions of a
specification. The quantitative analysis complements the qualitative analysis by
attaching occurrence probabilities to these circumstances. In order to ensure that
essential system behaviour is not precluded, the restrictions that a safety
specification will impose on the mission must also be considered.

3.1. Qualitative Risk Analysis

At each level of abstraction, analysis is conducted over safety specifications
(descriptions of safe behaviour at the level) and assumptions (properties
assumed at the level). In the proposed approach the qualitative analysis is
conducted in two stages; firstly we perform the preliminary analysis and secondly
the vulnerability analysis of the safety specifications.

3.1.1 Preliminary Analysis

In this paper, we consider the preliminary analysis to be the analysis that must be
conducted prior to the risk analysis. This analysis will involve confirming that the
specifications at a particular layer of the SSG comply with those of the layer that
precede it, and that the specifications in a layer are consistent. The relationships
that must be confirmed, to ensure compliance between the layers, follow from the
edges of the SSG. Demonstrating compliance between the layers involves
employing both verification (formal analysis) and validation (informal analysis)
techniques. The hazards are validated against the accidents and the safety
constraints are verified against the negation of the hazards. Subsequently the
strategies are verified against the specifications of the previous layer. At each
layer, any assumptions required to confirm the relationships, depicted by the
edges of the SSG, are recorded. As an example of the relations that must be
verified, we examine the edge (from the SSG in figure 1) that connects the safety
constraint SCi1 to the safety strategy SSi,1,1. Let us suppose that the strategy is
based upon assumption A (which represents a property of the physical process);
the relationship to be confirmed is then:

A A SSi,jl =* SCij fl

A result of the preliminary analysis is that the circumstances under which safe
behaviour is maintained, are clearly scoped and organised in accordance with
their contribution to each phase of the analysis. This activity ensures that the
knowledge gained during the development and validation/verification of the
safety specifications can be applied effectively during the risk analysis.

3.1.2 Vulnerability Analysis

After performing the preliminary analysis of the safety specifications, the
qualitative risk analysis consists of performing the vulnerability analysis of the
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specifications which probes the safety specification, and associated assumptions,
to identify the circumstances under which the specification is unable to maintain
safe behaviour, i.e. the violation of a specification. Once these circumstances are
identified, the safety specifications can be modified to become more robust
against possible violations. An initial step in the vulnerability analysis is to negate
the relationships obtained during the preliminary analysis and to identify the
system states which can lead to the violation of the specification when the above
circumstances occur.
For the relationshipfl, the logical assertion is negated and those plant states (PS)
which can lead to the violation of SCij are identified:

"-'SCi,1 (I SSi,l,! A PS) V(-A A PS) f2
For this relationship, which is associated with the plant level, the subsequent
vulnerability analysis of the safety strategy SSi,l,I will identify those conditions
that can lead to the violation of SCij.
Although logical formulae are useful in obtaining a high-level view of the

relationship between the specifications and assumptions, such formulae provide
limited support for a failure analysis. A suitable representation, for such analysis, ,
is one which supports the identification of possible failure behaviours that can
lead to the identified hazardous states. In this paper, to perform the vulnerability
analysis of the safety specifications, we employ fault tree analysis (FTA) [7] which
has been used extensively in the analysis of system safety and more recently in the
analysis of software safety [8]. A key feature of fault tree analysis that makes it
suitable for the analysis to be conducted here, is that the analysis is restricted to
the identification of system components and conditions that lead to one
particular undesired system state.

To construct a fault tree for the relationship f2, the initial step is to identify the
undesired state, in this case the negation of the safety constraint SCil, and then to
determine the set of possible causes which can lead to the undesired state (refer
to figure 2). For the logical formulaj2, we identify the violation of the assumption
and the violation of the safety strategy SSi,1,I. The latter has to be further refined
in order to identify its primary events.

Qualitative risk analysis provides a basis for obtaining more robust safety
specifications which will lead to a risk abatement of the overall system. In the
approach adopted, the analysis is performed by employing both formal analysis
and fault tree analysis in order to determine the weaknesses of the safety
specifications. Once these weaknesses are identified the safety specifications can
be modified to incorporate mechanisms which aim to reduce their vulnerability.

3.2 Quantitative Risk Analysis

In this section we discuss how a quantitative analysis complements the qualitative
analysis by introducing a measurement of confidence in the quality of the safety
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A A PSI I SSI,.l APSl

PSA -A PS 'SS1 1,1AP

Figure 2. Fault tree for formula f2

specifications. While the latter identifies circumstances which can lead to the
violation of the specifications, the former associates probabilities to these
circumstances.

Although the qualitative approach strives to achieve total assurance for the safety
specifications, there are three basic limitations which indicate that this aim may
not be realised. A first limitation stems from the process of capturing user
requirements: some faults introduced during the requirements stage may not be
removed during the verification process, nor can it be guaranteed that all such
faults will be removed during validation. A second limitation arises from
observing past experience in the utilization of formal techniques, which shows
that a formal verification may itself contain faults [9]. The third limitation is

related to the confidence that can be placed on the assumptions upon which a
specification is based. From these limitations we infer that even after performing
the qualitative analysis we are still faced with uncertainties concerning the quality

of the safety specifications, hence the necessity to quantify the uncertainties in
order to obtain a level of confidence in the quality of the safety specifications. In
other words, the aim is to obtain an early prediction of the contribution of the
software to the risk of the system.

To associate occurrence probabilities to those circumstances which can lead to
the violation of the specification, such as plant states and violation of

assumptions, might not be a difficult task. On the other hand, associating
occurrence probabilities to the violation of certain conditions that depend on a
software implementation is more problematic because during the requirements

phase of software development sufficient design and implementation
information is not yet available. Instead of estimating the probability of a
condition to be violated, target probabilities demanded from the higher level
safety specifications such as hazards, can be used. However, once a specification

L • ..
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is sufficiently detailed, currently available techniques which attempt to make. early predictions of the software reliability can be used, such as: metrics [10],
product-in-a-process [11], and execution of the specifications [12].

After conducting the quantitative risk analysis, the last stage of the quality (risk)
analysis is to perform the risk assessment of the safety specifications. This is a
judgement based on the estimated risk which provides guidance for high level
decisions, usually associated with the process of requirements analysis. The
results obtained from the quantitative analysis should be considered as a relative
measurement of how effective a given strategy is in reducing the risk of a hazard,
compared to the results obtained for alternative strategies. Hence it is most
useful in determining which strategy or combination of strategies is most suitable
for the risks involved (the choice of a strategy might also be influenced by
constraints imposed by the implementation, e.g. availability of sensors and
actuators with the required properties). Also, if the utilization of more than one
strategy is required, this preliminary risk analysis facilitates the search for a
suitable combination of the available strategies in order to avoid common mode
failures.

3.3 Mission and Safety Analysis

The primary aim of the quality analysis presented in this paper is to reduce the
system risk. However, it is usually impossible to maintain a complete dichotomy
between the mission and safety aspects, and it would be futile to impose safety
requirements which were so stringent that the system could not satisfy its mission.
To complement the risk analysis, the impact of the safety specifications on the
mission of the system must also be considered. Such an analysis involves relating
the different safety specifications to the mission requirements that can be
Affected by them. If analysis of the mission requirements follows the framework
described in section 2.1, leading to the construction of a Mission Specification
Graph (MSG), a comparison between the safety specifications and mission
specifications (requirements specifications for the mission) is made possible.
During the development of a robust safety specification it would be possible to
identify the mission specifications that may be influenced by inspecting the
variables that are restricted by the safety specifications and relating these to the
mission specifications at the same level of abstraction. Once the relevant mission
specifications have been identified an informal analysis of the restrictions that
the safety specification imposes on the mission can be conducted. An example of
such an analysis is presented elsewhere [13].

4 Conclusions

This paper describes a systematic approach for the quality analysis of the
requirements specifications, in the context of a methodology for the

requirements analysis of safety-critical systems. The approach is based on an

reurmet peiiatos i h cotx of a mehdlg fo the-
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analysis, at each level of abstraction, of the risks introduced by the various
decisions (that are based on assumptions) made in establishing the requirements.
The quality analysis follows the structure of a traditional safety study and
incorporates both qualitative and quantitative techniques.

The results of the risk analysis provide estimates of the risk associated with a
specification and predictions of the software's contribution to the system risk.
These results are used to guide the construction of robust requirements
specifications, increase the confidence (assurance) that the level of risk is
acceptable and provide the basis for a feasibility study. The approach to risk
analysis brings the safety studies of the system and software closer together and
delineates the contribution of the software to the overall system risk. Some
aspects of the approach have been applied to a train set example [14].
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Abstract
Experimental studies dealing with the analysis of data collected on families of
products are seldom reported. In this papa-, we analyse the failure data of two
successive products of a software switching system during validation and
operation. A comparative analysis is done with respect to: i) the modifications
performed on system components, ii) the distribution of failures and corrected
faults in the components and the functions fulfilled by the system, and iii) the
evolution of the failure intensity functions.

1 Introduction
Most current approaches to software reliability evaluations are based on data
collec Ld on a single generation of products. However, many applications, not to say
the great majority, result from evolutions of existing software: there are families of
products, the various generations resulting from evolutions for implementing new
functionalities. A new approach that is aimed at the incorporation of past experience
in predicting the reliability of a new, but similar, software has recently been
proposed in [I]. This approach requires the identification of parameters which
characterize past experience to be incorporated in the evaluation of the software
reliability. Clearly, the identification of these parameters will be based on the
analysis of data collected over the whole family of products. Experimental studies
dealing with the analysis of families of products are seldom reported [2, 3]. The data
considered in this paper were collected on the software of two successive
generations of the Brazilian Electronic Switching System (ESS)-TROPICO.
"Throughout this paper, the two products will be identified as PRA and PRB. PRA
was first developed and allows connection of 1500 subscribers. The processing
capacity of the TROPICO system was subsequently increased with the release of
PRB which allows the processing of up to 4096 calls. Many PRA software
components have been reused for the development of PRB and additional
components were developed.
The failure data collected on each one of these products have been considered
respecti% ely in [41 for PRA and [5] for PRB. While our previous work was mainly
devoted to reliability analysis and evaluation, this paper is concerned with the
qualitative as well as quantitative analysis of the failure data. Our objective is to do
a comparative analysis of the two successive products based on the data collected
during the end of validation and the beginning of operation. Emphasis will be put on
the evolution of the software and the corresponding failures and corrected faults.
This paper is composed of five sections. Section 2 gives a general overview of the
TROPICO switching system. It describes the main functions performed by the
system and presents some statistics about the evolution of PRB with respect to PRA.
Section 3 describes the test environment and the failure data collected. Section 4
presents some of the results derived from the collected data. Finally, Section 5
outlines the main results obtained from the analysis of both products.
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2 Software Description
2.1 General description
The TROPICO ESS software features a modular and distributed structure monitored
by microprocessors. The software can be decomposed into two main parts, that is,
the applicative software and the executive software.
Two categories of components can be distinguished in the TROPICO ESS software:
i) elementary implementation blocks (EIB), which fulfil elementary functions and
ii) groups of elementary implementation blocks according to the main four
functions of the system. These groups are:
"* Telephony (TEL): call processing, charge-metering, etc.
* Defense (DER): on-line testing, iraffic measurement, enor detection, etc.
"* Interface (UNM: communication with local devices (memories, terminals),...
"• Management (MAN): trunk and subscriber signalling tasks, communication with

external devices,...
2.2 Evolution of PRB with respect to PRA
The development of PRB started while PRA was under validation. Many PRA
components have been reused for the development of PRB and additional ones were
developed. Three types of EIBs can be distinguisbed:
"* new: specifically developed for PRB;
" mod1fied: developed for PRA and modified to meet the requirements of PRB;
" unchanged cornesponding to PRA EIBs included in PRB without modification.
Figure 1 gives the number of EIBs and the size of the software for PRA and PRB.
The software of PRA and PRB was coded in Assembly language. A 10 percent
increase of the PRB size can be noticed relative to PRA. Only 4 new EIBs were
developed for PRB. All the ElBs of PRA have been reused with or without
modifications for PRB.

#EIB size (kbytas)
PRA •29 319.41eý

PRB 32 350.800
Figure 1: Number of EIBs and size of PRA and PRB

Figure 2 shows the amount of modification performed on PRB with respect to the
number of EIBs and to the size of the software. About 67% of PRB code results
from the modification of the PRA code. About 75% of the modified EIB's belong to
the applicative software and 84% of unchanged Em's to the executive. Thus, the
increase of the TROPICO capacity mainly led to major modifications of the
applicative software with only minor modifications of the executive.
When considering the four functions and the distribution of the three types of EIB
of PRB, we notice that most of the unchanged modules belong to INT (about 60%).

121%

a) amwrdng tlo Uh nwubw of EIBa b) acoording to thi nas of EIB*

Figure 2: Distribution of unchanged, modified and new EIBs in PRIB
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3 Test Environment and Failure Data

3.1 Test Program
The software test program for TROPICO consists of four steps: 1) unit test,
2) integration test, 3) validation test, and 4) field trial test. The first three steps
correspond to the test phases usually defined for the software life cycle. Field trial
consists of testing a prototype in a real environment, which is similar to the opera-
tional environment. It uses a system configuration (hardware and software) that has
reached an acceptable level of quality after completing the Laboratory tests.
The description of the whole quality control program for TROPICO is given in
[6, 7]. The test program carried out during validation and field trial test is
decomposed into four kinds of test (functional, quality, performance and overload
tests). PRA and PRB validation were carried out according to this program. Figure 3
shows, for the period of data collection on PRA and PRB, the length of validation in
months, field trial and operation phases. As can be seen, no field trial tests were
performed for PRB. This is because many PRA components were reused for the
development of PRB, and PRB was put in operation while PRA had already been
operating for several months.

validation field trie operaton
PRA 10 4 13

PRB 8 0 24

Figure 3: Validation, field trial and operation length for the period of data collection (months)

During the operational phase, the number of PRAs and PRBs installed on
operational sites was progressively increased (see Figure 4). At the end of the data
collection period, up to 15 PRAs and 42 PRBs had been installed.

15. 46.
40.
36.

10. 30.
26.
20.

10.
•~~ 1 -2 " "" " -'r " 4

Vhtml Oionat Re1 5 id V0162uo 4zS

a) PRA b) PRB
Figure 4: Number of instaled sites verus time

3.2 Data Collection
Handling of failure data affecting the TROPICO ESS is through use of an
appropriate failure report (FR) sheet containing the following:
"* date of failure occurrence;
"* origin of failure: description of system configuration in which the failure was

observed and of the conditions of failure occurrence;
"* type of FR: hardware, software, documentation with indication of affected

elementary implementation blocks;
"* analysis: identification and classification of the fault(s) which led to failure

(coding, specification, intaface,...);

LJ
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•solutions:. the proposed solutions and those retained,

4 . modification control: control of the corrected elementary implementation blocks;
regression testing: results of the tests applied to the corrected elementary
implementation block(s).

Only one FR is kept per observed failure: rediscoveries are not recorded. In other
words, if several FR's cover the same failure, only one (the list) is entered into the
database. In fact, an FR is both a failure report and a correction report since it also
contains information on the fault(s) that resulted in failure.
The results presented in the following sections are based on the analysis of the data
collected on the observed failures and on the corrections performed.

4 Relationships derived from the data
This section presents and discusses some of the results obtained from the data.
4.1 Statistics on failures and corrected faults in PRA and PRB
Figure 5 gives the number of failures and corrected faults in PRA and PRB. It can
be seen that less failures occurred in PRB even though: i) the period of data
collection for PRB is longer than that of PRA (see Figure 3) and ii) a greater
number of systems have been in use during the operation phase (see Figure 4).
Furthermore, the number of corrected faults exceed the number of failures. This is
due to fact that some failures led to the modification of more than one EIB.

P FR # corrected faults

PRA 465 637
PRB 210 289

Figure 5: nunber of failures and corrected faults in PRA and PRB
Figure 6 shows the statistics concerning the number of EIBs that have been
corrected because of a software failure. As can be seen, the results for PRA and
PRB are similar. For both products about 80% of the failures led to the correction of
only one EIB. This is really in favor of software modularity and equally shows that
there is little failure interdependence among EIBs.
The analysis of the data corresponding to failures involving more than one
component allowed us to identify two pairs of EIBs that are strongly dependent with
respect to failure occurrence. For these two pairs, we noticed that the probability of
simultaneous modification of both EIBs given that a failure was due to a fault
located in one of them, exceeds 0.5. This result was obtained for both PRA and
PRB. This type of analysis can be of a great help for software maintenance. It
allows software debuggers to identify the stochastically dependent components and
to take into account this information when looking for the origin of failures.

# corrected ElBs I FR in PRA I #FR in PRB I
1 362 .6% 165 8.6%)
2 I 72 (15.5%) I 3 (15.7%) l

Z3 I 31 8.5%) 12 5.7%

Figure 6: Statistics on the number of BIBs affected by a failure

4.2 Distribution of failures and corrected faults per functions
Figure 7 gives the number of failures and corrected faults attributed to the four
functions: TEL, DEF, MIN and MAN (as defined in Section 2.1). The sum of failure
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reports attributed to the functions is higher than the total number of failure reports
indicated in Figure 5: this is because when a failure is due to the activation of faults
in different functions, an FR is attributed to each of them.

- FR T # c # FR #- orrected
faubt faults

MtE 146 190 TL 74 102

SDFf 138 164 D 67 71
l 170 191INT 61 68
MAN 78 2 1MAN 31 41
Sum 532 637 1 Sum 233 282

a) PRA b) PRB
Figure 7: Failure reports and corrected faults in TEL, DEF, INT and MAN

When looking at the distribution of corrected faults per functions (Figure 8), we
obtain similar figures for both products, in particular DEF and INT. It can be seen
that most of the coecons were performed in TEL and INT. This can be explained
by the fact that these functions are more activated than DEF and MAN.

S30%•, % TEL24% lENT!

a) PRA b) PRB
Figure 8: Fault distribution in TAP, DEF, INT and MAN

Furthermore, most of the failures reported led to the modification of only one
function (90 %). Among the 465 FRs (resp. 210 FRs) recorded for PRA (resp.
PRB), only 54 FRs: 31 during validation, 10 during field tests and 13 during
operation (resp. 21 FRs: 10 during validation and 11 during operation) led to the
modification of more than one function. This shows that the functions are not totally
independent with respect to failure occurrence, although, only a weak dependence
was observed. Note that this result, compared to those reported in Section 4.1,
shows that less dependence is observed between functions than between EIBs.
4.3 Distribution of PRB faults per EIB type
Figure 9 shows the distribution of corrected faults in PRB when considering the
unchanged, modified and new EfBs. Thus more than 80 percent of corrected faults
were attributed to modified EIBs. It is noteworthy that almost the same distribution
was obtained when considering data from validation or from operation only.

7% 10%

no p

Figue 9: Distribution of FRl per type
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When reviewing the mean values of fault density (number of faults per Kbyte)* in
the three types of EIBs, we obtain the following figures: 0.95 for modified EIBs,
0.75 for new ones and 0.49 for unchanged ones. One may think that the modified
EIBs are more error prone than the new and unchanged ones, and world conclude
that it is better to create new components than to modify already existing ones.
However, we should be careful when analysing this type of result. In fact, as only 4
new EIBs were developed for PRB, no significant conclusions with respect to this
particular point could be derived from this analysis.
An analysis of the average values of fault density presented in Figure 10 shows a
significant decrease of the fault density of PRB EIBs when compared to PRA. Also,
it can be seen that the fault density of all unchanged and modified PRB EIBs
significantly decreased when compared to the values computed for PRA. This
indicates an enhancment of the quality of the software. The experience cumulated
during the validation and operational use of PRA leaded to a better understanding of
the system and contributed to the improvement of the quality of PRB code.

43

-. *P,. Dp.11 ~ ~~

a) unchanged ElBa b) modified ElBa

Figure 10: Fault densities of PRB EIBs compared to PRA

4A EIB size and fault density in PRA and PRB
Scatter plots of fault density per EIB (number of faults per Kbyte) versus the size of
the EIB were plotted for PRA and PRB. It was difficult to ascertain any trend within
these plots. Our objective was to analyse a possible significant dependence between
the EIB fault density and their size.
Figure 11 gives for PRA and PRB the fault density average values for three
categories of EIB size. The fault density is almost constant, it is around 2 faults per
Kbyte for PRA and 1 fault per Kbyte for PRB. This illustrates the improvement of
the quality of PRB code with respect to PRA and thus confirms the results reported
in Section 4.3. As the size of PRA and PRB EIBs is measured in Kbytes and not in
kilo lines of code, it is difficult to compare these values to other fault density values
obtained which are reported for instance in [8, 9].

Size PRA PRB
EIB size > 15 Kb 1.80 1.08

10 Kb <EIB sizec 15 Kb 2.02 0.68
5 Kb <EIB sizec 10 Kb 2.31 0.60

E EIB sizec 5 Kb 2.56 0.71

Figure 11: Average values of PRA & PRB fault density versus EIB size

Figure 12 shows that the PRB modified EIBs exhibit higher fault densities on

IN Note that the fault density as defined here is different from the commonly used one (i.e.,
number of faults per kilo lines of code); the latter is not available for this application.

LJ
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average than unchanged EIBs. However, it should be noticed that the number of
EIBs in each category of size is small. Also, it can be seen that most of unchanged
EIBs have a small size (less than 5 kbytes) compared to modified EIBs.

EIB siz s15Kb W 1.25 6 EIBs 0.06 81 EIB)
10 Kb <EIB size< 15 Kb F 0.86 (5 Els) 60.75 M (1EIB)
5 Kb cEIB aim< 10 Kb 0.8 (4 EI 0.4 4 El I

EISsiz< 5SKb I 0.26 (1 EIB) 0.55 6
Figure 12: Fulk density average values of modified and unchanged PRB EIBs versus size

4.5 Evolution of failure occurrences with respect to time
Figure 13 shows the evolution of the failure intensities of PRA and PRB during the
period of data collection: for both products-even though the failure intensity is
globally decreasing during the operational phase-the trend is not monotone. The
local variations observed are due to the progressive installation of new systems (see
Figure 4). It is noteworthy that the'impact of the number of operational systems on
the evolution of the failure intensity has been reported in several papers, see for
instance [10, 11].
In order to evaluate the reliability of PRA and PRB as usually perceived by the
users, we need to consider the failure intensities corresponding to an average system
(i.e., the failure intensity divided by the number of systems in use). Figure 14 shows
the evolution of the failure intensities of PRA and PRB for an average system. It can
be seen that the failure intensities of both products decreased globally during
operation thus exhibiting reliability growth.

sto tliy 26 WAkM b•iewiY
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a) PRA b) PRB
Figure 13: PRA and PR]) failhre intensities
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Figure 14: PRA and PRB failure intensities for an average system
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In order to compare the reliability of PRA and PRB, we plot in the same figure
(Figure 15) the failure intensities observed for an average system during operation.
Unexpectedly, the reliability of PRB is worse than that of PRA. The same holds for
the groups of functions TEL, DEF and INT (Figure 16). This is surprising because,
as PRB has been developed from PRA which has been validated and extensively
used one would anticipate that its reliability would be better than that of PRA. This
may be explained by the fact that major modifications had been performed on PRA
in order to adapt the system to the new specifications and no field trial test had been
performed before the introduction of the system in the field. Note that about 80 % of
PRB failures recorded during operation occurred during the fist year of operation.

25 FAlm. iwisl

20

Is

10

cm4 *0aa F. amailmOw0

Figure 15: PRA and PRB failure intensities for an average system during operation*
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Figure 16: Component failure intensities for an average sy'stem1 during Operation

Typically, a new system experiences a maturing period during which its reliability is
relatively low but afterwards, reliability keeps improving and becomes better than

Note that for Figures 15 and 16, the X-axis indicates the number of months since the
system was put in operation.
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that of its predecessors. In fact, if we look at the long term evolution of the failure
intensity functions of PRA and PRB (see Figure 17) it can be seen that the residual
failure rate of PRB evaluated by the hyperexponential model [12] is less than the
residual failure rate evaluated for PRA. Similar results are also obtained for TEL,
DEF, and INT (Figure 18). For both products, the evaluations are based on the data
collected during the last year of operation.
It is noteworthy that the same was noticed in [10] for successive releases of a wide-
distribution software product and in [2] for three successive products of a family of
ultra-available computers designed by AT&T Bell Laboratories.

14 Fam.hmly2. FdM haki
12
10. 2

* .minttd 1.S-

6 1.

2 0.

0, 01

Sa *3 a- ot t 9

a)PRA: Aq= 1.3 10-4/h b) PRB: -: 5. 7 1O'6/h

Figure 17: FEtimation of PRA & PRB failure intensities

PRA PR8

TEL 2.6 10"$/h 1.2 10-/h
DEF 4.310.5 i 1.4 10-5)h

INT 4.2 lO'S/h 2.9 10.5 /h
MAN 1.4 104 ih 8.5 10-6)h

Figure 18: Residual failure rates evaluated by the hyperexponential model

5 Concluding Remarks
The data considered in this paper allowed us to analyse the evolution of the software
and the failures of two consecutive products of the TROPICO ESS. The main
results derived are as follows:
"* A high percentage of failures was attributed to modified EIBs.
"* For both products, about S0 % (resp. 90 %) of the failures led to the correction

of only one EIB (resp. function). Therefore, only a weak dependence with
respect to failure occurrence was observed between components.

"* The fault density of PRA and PRB is almost constant with respect to size. It is
about 2 faults per Kbyte for PRA and 1 fant per Kbyte for PRB.

"* TIe fault density values of all modified and unchanged PRB EIBs are lower than
those of PRA EIBs. This shows an improvement of the quality of PRB code with
respect to PRA.

" Comparison of the PRA and PRB failure intensities during operation shows that
PRB experienced a maturing period during which its reliability was relatively
low but aWrwardl, its reliability improved and became better than that of PRA.

The comparative analysis provides insight into the evolution of the software and the
reliability of two successive products of the TROPICO ESS. However, the results
obtained did not allow us to identify the various factors that influence the evolution
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of the reliability of a family of products. In order to reach this objective, additional
Sinformation is needed concerning for instance: i) the development process and ii)

more than two successive generations of products. Furthermore the collection and
analysis of several failure data sets relative to different families of products will be
of great help in this learning phase.
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Abstract

For the software validation with CASE-tools this paper gives an overview about
the requirements for the software and the different validation methods for safety
critical software. The requirements and validation methods are discussed on a
case study with CASE-tools. Also a critical assessment on the use of CASE-tools
is given.

1 Introduction

The department of the author works since a lot of years on the field of system
validation of electronic equipment used by the surface traffics (e.g. the railway).
The complexity of control applications for many systems has nowadays grown up

so that conmpter systems are required and software is used in the system ele-
ments. In safety critical system elements the implemented software has to be a
"safe software". The efforts on achieving safety in software are going in different
directions. Measures can be employed to avoid errors in the design process of
software or to neutralize safety critical effects of possible errors. To discover er-
rors in the software, validation methods are required. This paper will discuss on a
case study of software validation with CASE-TOOLS the safety requirements for

the software and software validation methods.

2 Safety requirements of the software

Before speaking about the validation methods it should be clear what are the re-
quirements for the safety relevant software. These requirements will be shortly
discussed in this chapter. The requirements concern a big group of software attri-

butes. They could be split under different points of view, e.g. in the following

way:

Requirements for the software as a consequence of requirements for the
complete computer system.

I]
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- fr the structure of the software.
- Requirements for the coding.
- Requirements for the protective measures against errors.
- Requirements for the documentation.
- Other requirements.

Short examples for the requirements will be given in the following chapter. The
enumerated aspects for each subgroup of requirements are only exemplary.

2.1 Requirements for the software as a consequence of require-
ments for the complete computer system.

The r ents for the complete computer system have a great influence on
the safety concept of the software. The following requirements result from the
structure of the whole system: 11 J[21

It should be clear if the computer system has a redundant structure, or di-
versity, if the system concept is a fault tolerance or fault avoidance con-
cept.
The interfaces to other systems must be specified in a clear and simple
way.
The safety relevant part of the software shall be separated from the non
critical software.

- The number of interrupts should be minimized to simplify the validation.

2.2 Requirements for the structure of the software.

The structure of the software has a great influence on the complexity of the vali-
dation process and on the possibility of errors. Therefore the following require-
ments should be considered:[l[21

The software shall consist of small modules for simplifying the valida-
tion.

- The software elements shall only be sequences of statements, loops, con-
dition clauses.

2.3 Requirements for coding.

The coding action is the transfer from a logical structured program (structure
diagram Nassi Shneiderman diagram) into an executable program language. At
this stage the errors that can occur would be systematic errors.
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To avoid errors in this stage the following aspects shall be observed: [2]

- The variables must be clearly separated in output, input, output/input
variable, global and local variables.

- The addressing of variables and jumps must be clear. Complex calculat-
ing of the conditions and addresses for branches and jumps shall be
avoided.

- Jumps (branches) shall only go to the beginning of a loop.
- The next executed statement after the end of a loop or subroutine must be

the next statement after the call of the loop or subroutine.
- Dynamic modifications of instructions in the operational programs shall

not be allowed.
- It must be assured that used compilers do not generate new errors into

the code.

2.4 Requirements for the protective measures against errors.

This measures could help to reduce the error rate and can be used to detect er-
rors in an early process stage:

- Use of diverse software
- Using redundant bits for coding,
- Mutual comparison of checksums from parallel channels.
- The software module shall run automatic tests in specified time intervals.

2.5 Requirements for the documentation.

The fidfillment of the requirements for the documentation is important for the
understanding and it supports the testability of the program. The documentation
will be also important for the reusability of software units. The most important re-
quirements for the documentation are the following ones: [31

The minimum documentation for the code is the text of the equivalent
step in the structure diagram
The documentation of each statement must be clear, redundant informa-
tion shall be avoided.
The use of each variable shall be described exactly, which procedures use
these variables, and to which physical address do the variables corre-
spond.

The structure diagrams for each software module shall be clearly ar-
ranged, and the connection between the modules shall be obvious
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The docmentation shall correspond to the newest version of the code.

2.6 Other requirements

The requirement which don't fit into the above enumerated classification are

for example: [4]
- The requirements demanded by the shut down procedure of the system

and the restarting procedure.
- The program segments shall have the same size if overlays are used. If

program segments require less memory, the unused memory shall be
filled with a defined bit pattern.

- Critical bit patterns (e.g. all bit Os or Is) shall be avoided. The output
from defect pieces of hardware has these patterns.

3 Validation methods

In this chapter a short overview is given about the validation methods and a
classification of the different methods is carried out. However, the fulfillment of
the above mentioned requirements does not give enough guarantee, that there are
no errors in the software. Therefore each software product has to be validated.
The validation methods are widely independent from the field of application. The
methods can be subdivided in two main subgroups: "black box" validation meth-
ods (also called functional validation) and "white box" validation methods [5],
which consist of qualitative and quantitative ones. Both subgroups include static
and dynamic validation methods. (The division of each subgroup into static and
dynamic methods has been discussed in [6])

3.1 Black box testing ,.

The black box testing focuses on the reaction of the test object, which depends
on the different external parameters of the test object. [7][81

Functions tests
Boundary value tests

At this method the boundaries and extremes of the input do-
mains are tested if there is a coincidence with the specifications.
The use of the value zero (direct as well as in indirect transla-
tion) shall be included in these tests.
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Prtbl¢td tests

With this method the distribution of the input data shall be sim-
ulated. At this test also data out of the specified domains shall
be included.

Input output requirements tests
The fulfillment of the input output requirements is proved by
comparing the output data with the specified data.

Interface tests
With this test method errors in subprograms and errors that can
lead to failures in particular applications shall be found out.
This is realized by boundary value tests and probabilistic tests.

Performance tests
At this test the boundary of the system efficiency is tested.

3.2 White box testing

At the white box methods the tests are focused on the structure and the internal
parameters of the test object. [7] [8][9

Analytical methods
Semantic analysis

There a relationship between the output and input variables is
delivered.

Compliance analysis
It helps to find out differences in ise of functions, variables,
procedures against the specifications in the program.

Structural analysis
The structural analysis is used to find out jumps into a loop that
are not allowed, or unreachable statements

Control flow analysis
This method is used to find out inaccessible code segments (un-
conditional jumps that leaves statements unreachable)

Data flow analysis
The data flow analysis helps to find variables that are read be-
fore written, or to find variables that are written more then once
without reading, or variables that are written but never read.

Listing inspection
At the listing inspection the program is reviewed concerning in-
consistency, incompleteness of development directions.
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4 Walkthrough method
Hence the test of the program focuses on finding out contradic-
tions by carrying out the functions mentally in a group.

Syntax check
This method is used to find out if the declarations of the vari-
ables, types, functions, procedures, are correct and
to find out if the sequence of variables (input/output) is correct.

Time testing
With this validation method the worst case in adjustment of running
times will be tested to find out collisions in running times.

Analysis of memory access
This method shall find out if some software modules write to a memory
area that is already reserved for a variable used by other procedures. It
can also be usable for probabilistic analysis of the internal variables.

Specification test
This test proves the fulfillment of the specification.

Structural test
This test shall find out if the structure of the software is appropriate to
the structure of the specification.

4 Case study with CASE-tools

4.1 Preparation phase

The used CASE-tools cannot interpret an assembler language. They use a spe-
cial language. The source code has to be translated into the CASE-tool specific
language. The translation process can be simplified by realizing a model of the
processor (written in the CASE-tool specific language) that simulates the used in- -

structions.
The input file needs some additional informations e.g. procedure specifications,

mainprogram specifications, function specifications, derive relationships, assert
statements. The derive relationships simplifies the analysis at a procedure call.
The assert statements can be used for refining the analysis. These informations
have great influence to the results of the analysis.

4.2 Analysis phase

The output of the CASE-tool depends on the specification in the command line,
(which keywords were used). The CASE-tools that have been used cover (see also
3.1 White box testing) the control flow analysis, data use analysis, information
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flow analysis, semantic analysis and compliance analysis. The information flow
analyser delivers as result the dependency of the variables from the used variables
and constants. For each variable the dependency from conditional nodes is stated.
Also a list of possible errors and redundant statements is given.

At the compliance analysis the relations between input and output variables are
calculated and compared with the specifications at the begin and the end of the
program block. These specifications have to be inserted by the operator of the
CASE-tool. The quality of the result from this analysis depends on these specifi-
cation statements. By implementing more conditions in the code the result of the
analysis can be simplified.

The control flow analysis is used to find out the structure of the code and to find
out unreachable statements, multiple entries into loops. The control analyser sim-
plifies the graph. The stage of simplification (if only sequences of nodes are re-
moved, or also self loops) can be controlled by the used keywords.

The data use analysis shows how often a variable is read before written. Hence
variables which are written more then once without reading could indicate omit-
ted code. Also the data use analysis shows if variables have been written and nev-
er read. This could indicate redundant code. As result also possible errors are stat-
ed, which have to be confirmed by the user of the CASE-tool.

The semantic analysis generates the relation between input and output variables
of each executable path. The user of the CASE-tool has to compare the results of
the semantic analysis with the requirements specificz2ion.

4.3 Evaluation phase

This is the most difficult section of the validation with CASE tools. There the
results of the different analysis methods have to be compared and conclusions
must be made.

Some problems about evaluating are given in this chapter. For example the
communication between the individual subroutines of the tested software is real-
ized for many times by using the accumulator and flag register. In this case the
CASE-tools can deliver an error statement that the register is not defined. This
handover procedure was not done randomly it was used systematically. There a
violation of the software requirements occurs. The main question here is now is
this violation acceptable or shall it be treated as a safety critical violation. The de-
cision whether the use of a register as variable is acceptable or not, has to be made
by the proofing person and the orderer of the validation (contractor).

At a procedure the data use analyser indicated that a variable was writter. for
sometimes with no intervening read. A review of the procedure showed that these
writing actions to the variable were correct. The used processor model simulates
the flag register by using boolean variables for each flag. According to the opera-
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tion of the processor the flags have to be set. To avoid such results by the CASE-
tool the variables which should be proved can be selected. This option simplifies
the analysis results. It should be taken in account, that the selection of the vari-
ables is a critical decision done by the user of the CASE-tool.

The software, that has been validated by the department of the author, has as
documentation of the code only a structure diagram (Nassi Shneiderman Dia-
gram) and an incomplete variable list. It is clear that the requirements concerning
documentation of the software were not fulfilled. The question is, shall the soft-
ware be treated as a safe software or as unsafe software. The incomplete docu-
mentation will increase the necessary time for the validation. The presentation of
the validation report has been discussed by G.List[101.

4.4 Advantages for the use of CASE-tools

The use of CASE-tools for software validation supports a formalizing of the
analysis results. This formalizing make the analysis of the code easier. To utilize
the simplification of the analysis the CASE-tool user has to investigate some time
into the preparation of the code before using the CASE-tool (see also 4.1 prepara-
tion phase). The time profit Tpr by using CASE-tools can be described mathe-
matically as time profit margin

Tpr (t, tase) = t - t case.
Where t is the required time for validation without CASE-tools and teas the re-
quired time for validation with CASE-tools. The time profit depends mainly on
the efficiency use of the CASE-tools.

The use of CASE-tools has not only an influence on the validation time, it also
influence the rest error rate of the validation. The rest error ratio of the validation
will be reduced by using CASE tools. This quality improvement depends mainly
on the person who carries out the preparation of the validation object and the as-
sessment of the analysis results. The rest error ratio rr can be quantitatively de-
scribd as

Nu
rr

N

where N is the number of all items and Nu is the number of all undetected errors.
The quantitative view of the error ratio has been discussed in more detail by A.
Sethy [111 [121. The quality improvement can be described as the ratio of the rest
error ratio without CASE-tools and the rest error ratio with CASE-tools

rr
V(rr ,r-caw-) =

rr-cafe

called also improvement factor V [131. The time profit and the quality improve-
ment can also be seen in the economical view. The CASE-tools represent a big-
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ger investment for firms. Therefore a economical justification for such investment
is required. The CASE-tools can be used for example 5 years. In this time interval
the user has to do M numbers of validation.
The costs per validation Cval are then

INV
Cval = -

M
where INV is the investment for the CASE-tool (including costs for training and
price for CASE-tool). This costs per validation can be transfered in a time
equivalent Tval as followed

Tvi = -

Cmn
where Cman is used for the cost manpower per hour.
The investment of the CASE-tool will be justified if following condition is
fulfilled:

Tpr (t, tcase) > Tval
in words: the time profit has to be greater then the time equivalnt Tval. The

quality improvement of the rest error ratio can be quantified economically by
using the mean costs of error consequences. The quantification of these costs
depends on the user of the validation object and they can vary in a wide range.
Discussing this proplem would go far byond this paper and cannot be done here
therefore.

For software metrics some usable results can be easily obtained by the use of
CASE-tools. The property of the analysis results are well specified, so that for ex-
ample the complexity of the software can be determined reproducibly.

5 Conclusion

The use of CASE-tools makes the analysis of the code easier. As it has been
shown in this article, the use of CASE-tools for software validation delivers an
improvement of the time- and the quality aspect. It should be considered that the
time for the analysis is reduced and the time for assessing of the results increase.
The quality improvement of the validation results depends also on the person,
who validates the software (see also chapter 4.4).

As it has been discussed above, the CASE-tools cover methods of the white box
testing group. For a complete validation of a safety critical software some meth-
ods of the black box testing group also must be carried out. The CASE-tools will
point at possible errors in the code. These errors have to be confirmed by other
validation methods. The use of CASE-tools may replace some parts of the con-
ventional test methods. However, it must be clear that the understanding of the
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code is still necessary.
Heflly it was possible to show in this paper that the use of CASE-tools can

simplify the life of the validating person.
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Abstract

The key element of dependable distributed systems is the
communication strategy. Communication between distributed
and/or redundant system components (processes) may use
standard network tools and protocols. The absence of a
multicast-support in the ISO network model above the Network
Layer requires special provisions for software that must distribute
data over a network to an unknown number of network partners.
A method is presented which combines the benefits of different
network layers to cover the needs of such a distributed,
dependable, and redundant system.

1 Introduction

The Austrian Research Center Seibersdorf (ARCS) has specified, designed and
implemented the distributed security, alarm and control system called CSS
(Sfaleable security &ystem) for Philips Industry [1]. The task of this system is to
protect an area, a plant or a building complex from threats from. the environment
(therefore is is sometimes called a "Risk Management System"). The properties of
such a system depend on its ability to get information about the environment and its
inner status (by peripheral subsystems, sensors, etc.) and the thrustworthiness of the
CSS itself. The system has as primary goals high availability and scaleability (i.e.
configurable freely within any topology, and network). One of the key ideas of the
concept is, that processes and processors may be distributed freely according to the
principles enumerated above, and the configuration is scaleable from a single
workstation to a redundant network of n processors. Dependability and fault
tolerance [2, 31 are implemented via distributed, redundant (software-) processes
using a multilayer software structure for communication and message exchange and
functional software interfaces between the various external subsystems. One topic is
the communication strategy chosen to support any redundant hardware and software
structure, fail-over strategies, and dynamic reconfiguration. The experiences with
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die of the communication mechanisms on different levels of the

undedying network protocol and the problems encountered during the
implementation and installation phase under hard real-time and load restrictions will
be discussedL

2 System Overview

The design and development of the CSS system started in 1988, when Philips
Industry decided to plan a new "Alarm and Control System" which should take the
place of the hitherto existing PDPll-based system XLSS (Extended Local
Supervisor station). The primary goal of such a system is to protect an area, a plant
or a building complex reliably foxn break-in, fire and other undesired events. In
addition, the system should be able to control parts of the building, plant, or area,
a4d, of course, reflect (and show) the current state of the "outer world" as well as the
"inner status" at any time.

The overall system is composed of the central CSS for processing, managing,
visualization and operating, and the peripheral subsystems, which are partially
autonomous sources of information (and control), provided by different vendors and
following different communications and control strategies. The overall system
dependability is limited by the dependability characteristics of the peripheral
subsystems; the goal of the design was, that peripheral subsystems as well as human
operators, guards etc. can justifiably rely on the CSS services.

Several constraints concerning the environment and the target hardware
components were given by Philips, so it was not possible to choose special reliable
computing elements. The most important restrictions were the following:

RI The usage of standard off-the-shelf Digital Equipment Corporation hardware
and software, especially VAX computers running the VAX/VMS operating
system.

R2 The usage of a standard Ethernet Local Area Network (LAN), including
standard network controllers and protocols (CSMA)CD).

R3 The usage of customer-defined and/or pre-installed subsystems (redundant or
non-redundant communication fines), which represent the interface to the real
world.

R4 The usage of standard software components wherever possible (e.g. a
standard database system and the Graphical Kernel System GKS [4]).

R5 A restricted development budget and a target-date for completion.

Restriction R2 prevents the use of special (hardware) network attachment
controllers as described in [5], and it also implies the discussion of Ethernet being
adequate for real-time (e.g. [61), and dependability M.

Restriction R3 also means that some subsystems are not available for "off-line"
(ab) software tests; the software for these subsystems must be carefully checked out
i the "ing" system.

L:• °.. .. i l I ii l m'm i l aaIi a li M
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All these limitations lead to the challenging task of designing and building a
chap, re-usable, and dependable system consisting only of standard
c nnents [8).

. 2.1 Building Blocks

The main strategy for the system was to split up the software and the hardware into
4 building blocks..

2.1.1 Software Building Blocks

The basic decision while designing the software was (i) to separate the
CSS-software into an arbitrary number of processes (about 40 at the moment), and
(ii) to provide a single logical communication path for inter-process communication.
To avoid an uncontrolled information exchange between processes, primary
communication paths have been introduced. These primary communication paths
define groups of processes that may exchange information. The processes are
grouped into two classes, namely central processes and peripheral processes. Central
processes are typically the Central Coordinator or the Database Access Module,
peripheral processes are Human Interface processes or the Subsystem Access
jxprocesses [1). Communication can only take place (i) between a peripheral and a
central process, and (ii) between central processes. The main difference of central
and peripheral processes is, that central processes must be available in the system,
and peripheral processes may be available in the system. So the peripheral processes
can be seen as one of the "scaleable parts" of a CSS. Fig. I shows a simple structure
of CSS processes in a single node and the primary communication paths.

Human luInm, fe I SuWbymt Aeomm Sulmyo I

Hu1man Inuwfam. II Subsyselm I

Protosol Pvdni t . Subsystem n

Figure I CSS Procsses in a Single Node

This structure has the following advantages:

Al The system may grow as completely new processes (e.g. new subsystems or
new human interfaces) can be added very easily.

A2 The processes may reside all on one node, or may be distributed over several
network nodes as the process communication can be seen as remote
procedure calls.

A3 Single (or all) processes may be replicated according to the needs of a
specific CSS installation.

t•I ill il ill ll lii I I ,
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2.1.2 Hardware Building Blocks

As mentioned above, one of the main characteristics of the system is its scaleability.
Thela are several ways in which this takes place. For the hardware, two
requirements had to be fulfilled, first the requirement to build a n-fold redundant
system, and second to provide interfaces (typically RS232) to a conceptually
unlimited number of subsystems. The first characteristic can simply be realized by
connecting n nodes to a network, where each node runs a CSS. The second
characteristic is of more interest, because it is not possible to put an arbitrary
number of interfaces to a computer, so, Terminal Servers were used (Fig. 2).

t ~LAN Segment

RS232

Figure 2 Terminal Server

In addition to the benefit of having an arbitrary number of communication lines,
Terminal Servers offer the advantage of being able to control a (server)
communication port from several nodes. This feature makes a special line-switching
hardware obsolete. The switching of fines to different nodes can be controlled by the
software. Disadvantages are discussed in Sec. 5.1.

3 Process Communication

Process communication takes place by means of mailboxes. The principal idea for
mailbox communication between CSS processes is that each CSS process has
exactly one mailbox where it receives information (messages). The basic view of
two communication CSS processes is show in Fig. 3.

Process A Proce" B

Figure 3 Basic Communication of Two CSS Processes

This kind of communication strategy ensures that each process has precisely one
input channel. Handling messages in this way would cause some situations where a
process may be blocked. For instance, when process A is busy (i.e. not ready to
empty its own mailbox) and another process B would fill up the mailbox of process
A. In this case, process B would be blocked because it cannot get rid of its messages.
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3.1 Receive Queues

To avoid these situations, it must be guaranteed that a process is always able to
empty its mailbox. This is done by splitting a CSS process into two (or more)
pmrallel-working threads M9]. Thread 1 reads the mailbox asynchronously and puts
the message into into an arbitrary large FIFO queue, which is read in thread 0.
Thread 0 (the application program) does not read from the mailbox, but from the
receive queue (Fig. 4).

Mailbox

Throw- I--
ThreadO

IMaeeea EnvironmentApplication Program

Figure 4 Receive Queue of One CSS Process

Even if thread 0 is blocked (e.g. if the application program is doing some
calculation), thread I is still working.

A problem arises when the system must handle (soft) real-time events with this
kind of communication structure. Assuming that a burst of non-real-time events
followed by a real-time event would cause the real-time event to be delayed. A
solution for this problem is to introduce several receive queues as shown in Fig. 5.

Mailbox

Thred I
I Thread 0

I an M -e Environment
SApplioon Program

Figure 5 Multiple Receive Queues of One CSS Process

The events (messages) in the CSS have assigned several priorities, and each
piority has a separate receive queue. The receive part of the CSS message handling
environment first scans the the first receive queue (with priority 0, which means
"real-time" priority) and delivers the message to the application program. Then all
other queues are scanned. This method still requires the use of bounded loops
(e.g. [O1).

LI
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3.2 Real-World Interface

The previously described mechanisms are also used to implement a non-polling
(event-driven) form of real-world communication. The communication layers are
extended by an additional thread. This thread may handle different protocols, e.g.
protocols for external devices, or the X-Protocol (Fig. 6). After completion of
protocol handling in thread 2, the final "packet" is processed by the system as any
other message.

Externa Protocol (Redtundat)

Thread 2 S Application Thredd

Thread I Mailbox

.. .ea.. Message Environment
N _ _ _ __

Application Program

Figure 6 External Protocols

As mentioned above, this stack is used to build an interface to foreign protocols.
These protocols are widely used in the CSS as a link to different subsystems, about
30 at the moment.

4 Network

The principal communication layers of a CSS process are shown in Fig. 6. The
sending object S can be any other process or even the receiving process itself. So it
is (or appears to be) very easy to expand the system for network usage by simply
adding a new sending object which performs a network operation. Network
capability may be introduced to such a system for the following two reasons:

NI to build a client-server system

N2 to distribute data to process replicas

of which only N2 is of interest here.
The main difference between these two items is that N2 requires (parallel)

communication with an usually unknown number of (network) partners. Several
techniques have been introduced to perform these multicast communications
[11, 12]. But due to some restrictions given in Sec. 2, it was not possible to
implement a complete reliable group, or multicast, communication protocol.
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4.1 ISO Network Layers

The method described now tries to combine the benefits of different ISO network
layers to cover the needs of N2 and to minimize the expenditure of implementation.

The following prerequisites were given:

(i) An Ethernet Local Area Network, that provides multicast and broadcast
functionality on the Data Link Layer.

(ii) An ISO network, that provides reliable communication above the Network
Layer (with the Network Service Protocol NSP, "A protocol that provides
reliable message transmission over virtual circuits. Its functions include
establishing and destroying logical links, error control, flow control, and
segmentation and re-assembly of messages" [13]).

4.2 Simulated Multicasts

The idea now was to use these two network features, namely

"* real multicasts on the Data Link Layer,

"* and an ordered set of reliable unicasts on the Network Layer

together as simulated multicasts in the following manner. Each process transmits a
unique "hello" multicast packet (unique means (i) a group-unique Ethernet Protocol
ID, and (ii) a group-unique multicast address" both administrated by the CSS) on the
Data Link Layer periodically, which is :,,ponded to by the instances of that
processes on other nodes. The response to this real multicast packet (a unicast
packet) is used to build a list of network partners. Both activities are performed in
different threads. Further network calls use this list to transmit data with the NSP as
simulated multicasts, i.e. a sequence of unicasts, which are

(i) strictly sequential,

(ii) synchronous, and
(iii) do not require any protocol handling.

If a process does not respond to subsequent "hello" packets, or if a call on the
Network Layer fails, the process that caused that failure is assumed to be down and
will be removed from the list.

Since communication on the Data Link Layer is not reliable and packets may get
lost during heavy network load, the receiving partner has to wait a certain time
before he is allowed to assume a non-responding process being down. The CSS
application process that uses the multicast mechanism has to call one MULTICAST
routine only which then performs all necessary processing steps.

An overview of the simulated multicast mechanisms is given in Fig. 7. Note that
this figure does not show the relation to the CSS process communication as
described in Sec. 3, Fig. 6.

Voting is also performed on this level within segments (a) and (b). As a result of
this voting, an appropriate message is delivered to the calling process.
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Figure 7 Simulated Multicasts

It is clear that the overall transmission time T for a simulated multicast packet
increases with the number of nodes n involved, with

T=o+i(te v,)
/:=1

where to is the time consumed by the sender node, ti is the individual error-free
transmission (and receive) time to node i. and ci is an additional delay caused by
retries due to network errors. t. and the individual transmission time ti depend on the
CPU power only, Ti depends on the network load and the CPU power, with

-i = 0 Vi(i r I I ... n}) for an error-free transmission. Table 1 gives an overview of
individual transmission rates (to + t + r, n = 1).

CPU Power
CPU Type R x a

CSS VUP SPECmark (Mbps)

VAXstation 2000 1.0 0.9 - 0.06 144 2.608

MicroVAX 3600 2.5 3.2 - 0.34 144 0.110

VAXstation 3100/76 10.0 7.6 - 0.67 144 0.252

VAXstation 4000/90 25.0. - 32.8 1.93 144 0.032

Table I Network Transmission Rates of Application Data

Data are based on the communication between two computers of the same type
over an Ethernet Local Area Network (10 Mbps). The transmission time T of
user-level packets with a constant size of 128 octets of application data has been
converted into the transmission rate R given in Mbps. (Note we have to distinguish
between a user-level information packet and a LAN-level information packet!) The
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CPU power is given in different tems (CSS = CSS-specific computing power
mfative to a VAXstation 200(0 VUP - VAX Units of Processing -MIP), x is the
nunber of measurements, a is the standard deviation.

S Experience and Field Data

The system is now installed at 6 sites with a sum of 10 system-years of operation.
Experience and field data refer to these systems.

5.1 Terminal Servers

Terminal Servers as mentioned in Sec. 2.1.2 turned out to be the most problematical
components in the CSS. The problems encountered were

(i) questionable real-time characteristics
(ii) unmotivated "port stops"
(iii) different behavior of different types of Servers
of which w-- will discuss (i).

5.1.1 Timing Problems

Fig. 8 shows the typical 1/0 timing behavior of a Terminal Server with the following
setups: DECserver 200/MC (V3.1 BL37, LAT V5.1, ROM BL20), RS232,

1200 baud transmit/receive speed, one start-bit, one stop-bit, even parity,
23 characters message length, VAXstation 3100fl6, VAX/VMS V5.5-2.

I/O Time (e)

2.5

I - Electrical network failure
2-

1.5

0.5

0 
24

Observation Time (h)

Figure 8 1/0 Time on a Terminal Server

A "Schauer PDU/DCF77" clock was used as a data-generator. Every five minutes
this clock transmits a 23 character packet containing the current date and time over a
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serial line. This time information was compared with the current system time, as the
line clock was assumed to be accurate, and the system-clock was assumed to be a
"good" clock [14]. The result of this measurement was that the transmission and
processing time of a packet was between 0.2 seconds and 0.3 seconds during normal
network load (2%) and low CPU load (<1%). Heavy network load (50%) increased
the transmission time up to 0.6 seconds, and electrical network failures caused
delays of over 2 seconds.

Using a direct communication link (UART) gives a constant transmission time of
0.2 seconds (not shown in Fig. 8).

As the CSS was not designed to be a hard real-time system, is was possible to
solve these timing problems within the CSS software.

5.2 System Field Data

Table 2 gives an overview of the systems, nodes, disks, and Terminal Servers
currently installed and operating in the field.

Systems Nodes Disks Servers

Number of elements 6 12 16 8

Operational years 10 22 30 14

Damages n/a 0 2 1

Table 2 CSS Elements

To date, three accidents have occurred, two head crashes on disks, and one
Terminal Server breakdown. The head crashes have been tolerated by the CSS since
the VAX/VMS operating system automatically shut down and the CSS processes
running on those nodes have been recognized as being unavailable. The Terminal
Server breakdown has been tolerated for those subsystems with redundant
communication lines to different Terminal Servers.

System Node

Down reasons downs UA (hours) downs

1. Power fails (test, service) 0 0 7

2. CSS software failures 1 24 8

3. VMS software failures 0 0 5

4. Hardware failures 0 0 2

5. Maintenance 21 3.3 61

1 22 27.3 83

Availability 99.95%

Table 3 CSS Downs



263

4 Table 3 shows the down-times of single nodes and the whole system. The
unavailability (UA) of the whole system had two reasons; first a fatal software
failure in a central CSS process that caused all nodes to be inoperable. The failure
was repaired within 24 hours. The second reason was (and is) the down time due to
system maintenance and software upgrades. All other node failures have been
tolerated by the CSS.

6 Conclusion

A system overview of a dependable, scaleable distributed system has been given (for
a more broader description see [1]). The design goals of scaleability, flexibility of
configuration, ergonomy of human interfaces, flexibility to integrate new peripheral
subsystems and the application of standards as far as possible have been reached by
"modularization through distribution", which includes the concept of hardware and
software building blocks, process replication and standard ISO network layers.
System maintainability and the possibility of easy implementation of a variety of
fault tolerant architectures are further results of that concept. These goals cannot be
reached by a single processor/single layer approach, although there are some
tradeoffs with respect to some of the dependability attributes when a distributed
solution is chosen.

Dependable communication mechanisms have been identified as the key issue for
providing reliable services for process fail-over strategies and dynamic
reconfiguration.

It has been shown, how on basis of standard hardware and software, by adding
some additional software using Ethernet multicasts to provide the valid
configuration status information, and simulated multicasts within the ISO stack
framework, a reasonable dependable system with reasonable real-time
characteristics has been implemented. Some figures and field data as well as
relevant implementation details have been presented.

Until the end of the year, the CSS system will be installed at ten sites, mainly
large banks and museums (including WAN-networks connecting several buildings
and branches).
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1. Introduction

This paper addresses some issues involved in real-time detection of failures of re-
active systems. The system architecture considered is shown in Figure 1. External
behavior of the reactive system is monitored by a supervisor, which may execute on
a separate platform. The supervisor monitors the inputs and outputs of the system
and reports the failures that occur.

Real-time detection of failures has a number of benefits. Consider an application
such as telecom switching:
a) Early reporting of failures gives the operating company an opportunity to repair

the underlying fault before the users start filing complaints.
b) Certain kinds of failures, such as those due to loss of shared resource units, are

visible only to an entity with global perspective. Early notification of such failures
makes it possible to take corrective steps before its accumulated effects result in
major service disruptions.

c) In many reactive systems, failures of control software do not have immediate ef-
fect. Because of mechanical inertia etc., a long time interval may elapse before a
software failure has detrimental impact on the controlled hardware. Real-time de-
tection of failures provides a basis for subsequent retraction of their effects.

Supervision-based approaches to failure detection and retraction are becoming more
important as systems and their control programs are constructed from off-the-shelf
components.

In applications in which the external behavior of the reactive system is specified
formally, it is attractive to have the supervisor execute (or interpret) a model derived
from system specification.

The paper considers the case when the external behavior of the target system is
specified by a model based on communicating, extended finite state machines (spec-
ification processes). The formalism used is the CCITI' Specification and Description
Language (SDL)[ 1]. SDL is an international standard used in the telecommunication
industry. SDL specification of external behavior is supplemented by the specification
of response times. The focus of the paper is on event-driven applications whose pro-
cessing is relatively simple. A typical application is telecom switching.

Supervision-based failure detection has some similarities to automated test ora-
cles [4]. However, automated oracles do not detect failures as they occur and usually
assume a particular resolution of specification nondeterminisms. Real-time monitors
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(see, e.g. [5]) work in real-time, but are typically closely coupled with the program
being monitored. Supervision-based failure detection also resembles approaches
such as the safety bag[6]. However, SB checks for violations of safety regulations
and aims to prevent failures from occurring in the first place. Specialized techniques
developed to detect certain kinds of telephone exchange failures in real-time can be
found in articles describing their maintenance software (see, e.g. [7]). The theory of
beliefs, introduced in Section 3, was inspired by the truth maintenance systems and
nonmonotonic reasoning[8].

This paper is organized as follows. Section 2 overviews the CCITT SDL. Section
3 discusses the two basic strategies for failure detection in real-time (input and out-
put-driven) and presents formulas that estimate their processing and memory re-
quirements. Section 4 describes experience with input-driven supervisor which was
developed to automatically collect failure data of a small exchange. Section 5 offers
concluding remarks.

2. Specification Formalism and Issues
Structurally, an SDL specification consists of a hierarchy of blocks. Blocks are inter-
connected by channels. Channels carry signals between blocks. A leaf block contains
one or more SDL processes, whose behavior is specified by an extended finite state
machine. Specification processes may contain local variables, which may be updated
and tested. Processes within a block communicate by exchanging signals over sig-
nalroutes. SDL semantics is defined operationally, by the Abstract SDL Machine [1].

SDL is illustrated in Figure 2. This figure shows partial, SDL-based specification
of call processing for a small (and simplified) telephone exchange. Part (a) of the fig-
ure shows the block diagram and part (b) gives a fragment of behavioral specifica-
tion for the Line Handler, one of the processes in the block diagram.

Part (a) shows that the specification consists of two major blocks. One contains
the LineHandler processes, which are responsible for the external behavior of the ex-
change seen by individual phones. The other contains a resource manager process.
This process controls the sharing of exchange hardware resources needed to process
a call. One resource class may be the touchtone receivers, which decode the digit
from the tones sent by the phone when a key is pressed. For simplicity, Figure 2
shows only one resource manager process.

Part (b) states that when the telephone is idle and goes offhook, a request signal
for the resources needed to handle the origination will be sent to the Resource Man-
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ager. The Resource Manager may grant the resources by sending a Grant signal to
the Line Handler, in which case dial tone is applied to the phone. If the resources are
not granted (signal Resource NotAvailable), the phone gets the fast busy tone. If the
phone goes onhook while its Line Handler is waiting for response, the OnHook sig-
nal is kept (Save'd) until a subsequent state.

SDL specification of external behavior are complemented by performance speci-
fication which give the maximum permissible time intervals between an input signal
and the response(s) it triggers (for example, the time from OffHook to DialTone).
Furthermore, some external signals may be communicated only indirectly, by a sig-
nal carrier. For example, OffHook and OnHook are encoded in changes of loop cur-
rent. The specification includes the definition of the minimum and maximum time
for which the signal carrier change must be present in order for the encoded signal to
be recognized.
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Several issues must be considered in the development of the supervisor. One is
the incorporation of specification of response times into the supervisor. A major is-
sue arises out of the nondeterminisms permissible under the specification formalism
used. SDL nondeterminisms fall into two major categories:
- indeterminate delays in communication of signals over channels;
- nondeterminisms in the specification of behavior of individual processes (sponta-

neous transition NONE and nondeterministic path selection ANY [3]).
These nondeterminisms give rise to different but legitimate external behaviors. The
supervisor must be able to properly deal with such behavioral alternatives; it should
not have a preconceived idea about how the nondeterminism should be resolved in
the target system and consider any other alternative as failure.

The supervisor must also be able to properly handle uncertainties arising out of
the encoding of external signals in signal carriers. Over a short interval of time (be-
tween the min and the max permissible signal recognition time), a state change of
signal carrier may but need not be recognized as a valid signal.

3. Supervisor Strategies for Failure Detection
In principle, there are two basic strategies for supervisor-based detection of failures
of reactive systems - the input-driven and the output-driven. These two strategies are
discussed below.

3.1. Input-Driven Failure Detection

In the input-driven strategy, when an input is observed, the supervisor precom-
putes the possible system outputs triggered by it and stores them (Figure 3). Because
of specification nondeterminisms, there may be more than one legitimate output.
When an output from the target system is observed, the supervisor compares it to
those on the list. If a match is found, the supervisor removes from the list the alterna-
tives not pursued by the target system and updates the supervisor model state. If no
match is found, the supervisor concludes that a failure has occurred and reports it.
The supervisor then attempt to re-synchronize with the target system so that does not
report the subsequent legitimate behavior of the target system as failures.

To properly handle the nondeterminisms present in the specification model, the
supervisor must be able to consider several behavioral alternatives simultaneously.
The theory of beliefs has been developed for this purpose[9]. In this theory, a sepa-
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rate thread of a specification process (a belief about its behavior) is created to repre-
sent a behavioral alternative. In the case of SDL, a major source of nondeterminism
is the indeterminate propagation delay of signals over channels. In the belief theory,
when a process sends a signal over a channel, the destination process is split into two
threads. One thread represents the alternative that the destination process has re-
ceived the signal and the other that the signal is still in transit. The former thread will
process the signal and, if appropriate, produce signals to other specification process-
es or to the external world. The latter thread stores the signal in transit. This thread is
needed to properly handle the case when another process sends a signal to the desti-
nation process at about the same time. Due to the indeterminate delays over chan-
nels, the second signal might actually have arrived to the destination process earlier
than the first. The signal-in-transit thread is used to generate all possible signal arriv-
al sequences at the destination process. The threads representing consistent behav-
ioral alteratives of specification processes are linked into sets. Note that in the
scenario discussed, the two threads of the destination process stand for mutually ex-
clusive behavioral alternatives.

When an output from the system is observed, the behavioral alternatives (thread
sets) disproved by it are terminated and their constituent threads deleted.

If the specification of behavior of a process includes a nondeterministic construct
in the transition being executed, a separate thread must be created for each possible
transition path. As before, the alternatives invalidated by the subsequent, actually
observed external behavior are terminated.

Figure 4 presents a high level model of the processing involved in propagating an
input signal through D communicating processes before the output(s) it triggers are
produced. The small rectangles attached to processes represent the signals in transit.

0
000 0

Figure 4. Processing of Inputs in Input-Driven Strategy

The processing time requirements of input-driven strategy can be estimated from
Figure 4. The processing time needed to pass a signal through a specification process
Pis

T, = N11 +Nf(ts +tc) (3.1)
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where
Nf- the mean forward nondetermininsm factor (the number of transitions that may

potentially be executed as a result of a given incoming signal),
tt = the mean transition processing time,
t, = the mean interprocess communication and context switch time,
t, = the mean cost of creating a new thread (a clone) of a specification process and

storing its signal in transit.
The output signal(s) produced by P are going to be processed by Nf specification

processes. (Note that the signal-in-transit thread does not process the signal; the sig-
nal is merely stored.) This will repeat itself, until a specification process is reached
which generates an external output signal. If D is the mean number of processes the
external input passes through before an external output is generated, the total cost of
processing of an input signal can be approximated as

Ci I+ +2-+D-)T (3.2)
Note that the cost of matching (and of ensuing termination of invalidated threads)
was not included in the above formula.

The additional memory needed for signal-in-transit threads can be estimated as

M = (I+N+N+...+N-i)mr (3.3)

where mr is the memory required for a thread (including its input port).
In the model considered, each process along the input signal propagation path had

only one thread. However, under some circumstances, more than one thread may
temporarily co-exist. This is, for example, the case with the resource manager pro-
cess of Figure 2, which is on several input-output paths. Consider the case when a re-
quest signal Rp from process P is sent to a resource management process (M). Two
threads of M will co-exist for a brief time, until an external output is observed which
will cause one to terminate. If another process, Q, sends request RQ to M before the
termination occurs, five threads will have to be created reflecting all signal arrival
possibilities at M - RpRQ, RQRp, Rp received and RQ in transit, RQ received and Rp in
transit, and both RQ and Rp in transit. In general, if r is the number of requests to M ,.

the effects of which have not yet been confirmed through external output, the number
of threads of Mis [10]

(3.4)

i=O
Even for small r, the number of additional threads may be large. As a conse-

quence, the processing costs and memory requirements in the input-driven approach
may be subject to sudden surges.

To detect response-time failures, the input-driven strategy may take advantage of
the form of response-time specifications, which are stated in terms of maximum time
interval between a stimulus (external input) and a response (external output). Two
cases are possible. When the same specification process receives the stimulus and
produces the response, it is sufficient for it to set up a timer upon the receipt of the
stimulus. If the response arrives before the timer expires, it is canceled. If not, the
timer times out and performance failure is reported. This approach must be extended
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in cases when the response is generated by a specification process different from the
one that received the stimulus. Note that the cost of setting up and cancelation of
timers was not included in the above formulas.

3.2. Output-Driven Failure Detection

The output-driven strategy is an opposite of the input-driven one. It is feasible
when the processing done in state transitions can be easily reversed. In this strategy,
the inputs to the target system are kept in a buffer (Figure 5). When an output from
the target system is observed, it is propagated backward through the specification
model. The input signal(s) that caused it are determined. The input buffer is searched
for the signal(s) expected. If a match is found, the supervisor updates the state of the
specification model and removes the input signals whose effects have been fully ac-
counted for from the input buffer. If there is no match, the supervisor concludes that
a failure must have occurred (there is no cause for the output observed). Note that the
backward tracing of an output signal may not necessarily reach a specification pro-
cess that takes input from the environment. It may cease at an internal process which
is in a state that cannot produce the needed signal.

Figure 6 presents a high level model of the processing involved. The model takes
into account the possibility that the signal traced might have been produced by sever-
al transitions emanating from the current specification state in the sending process
and that there might have been several possible sources for the triggering signal.

The processing time requirements of output-driven strategy can be estimated
from Figure 6. The processing time needed to trace a signal backward through a
specification process P is

Tp = (Ntt +NN,,ts) (3.5)

where
tt = the mean cost of (backward) transition processing,
t, = the mean cost of backward signal propagation,
Nt = the mean number of transitions in the current state of the specification process

that could have emitted the signal traced,
N,= the mean number of processes that could have emitted the triggering signal.

The number of specification processes that must be visited after the trace-back
through one specification process is N/N,. The overall cost of tracing back the output
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00

Figure 6. Processing of Outputs In Output-Drive Strategy

produced through D process levels can then be expressed as
Co I + NtIV, + (NtNe) 2 + ... + (]•NN) D-1 Tp (3.6)

In the processing model of Figure 6, no additional memory is required to process
an output signal.

As observed earlier, a major advantage of output-driven strategy with respect to
the input-driven one is that it does not have to directly enumerate all possible behav-
ioral alternatives. It waits to see which one will actually happen. However, the speci-
fication nondeterminisms must be taken into account in explaining what has
happened. In particular, the indeterminate channel delays must be considered to cor-
rectly explain the outputs observed. As in illustration, consider the scenario when
phone A and B call phone C almost simultaneously. Assume that B is going to be
successful. If the ringing on phone C is the first output signal detected, it would be
incorrect for the supervisor to stop its search as soon as it discovers that A has dialed
C. For a brief interval of time, it has to consider both A and B. It is only when the ex-
ternal outputs on phones A and B (i.e. busy and ring tone) are observed that the su-
pervisor may eliminate the alternatives invalidated. The theory of beliefs can handle
such scenarios by creating two Line Handler threads for each of A and B. However,
at least in the application domain considered, such scenarios appeared to be relative-
ly rare and the cost of thread creation was not included in the formulas given above.

The detection of response time failures in output-driven supervisor is rather diffi-
cult, if it is to be done in real time (i.e. as soon as the response interval expires). This
is because of the nature of output-driven approach, in which the work is deferred un-
til until the output (the response) appears. If it is imperative that the detection of such
failures be carried out in real time, it is usually necessary to separate the detection of
behavioral and response time failures and use a separate checker for the latter.

4. Illustration and Experience

A supervisor based on the ideas discussed in this paper was implemented for detec-
tion of failures in a small exchange. Real-time detection of failures was required for
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automatic acquisition of failure data needed in the development and validation of
new software reliability prediction models[12]. The exchange and its telephones
were emulated on a Unix workstation. Programmable telephone traffic generators
were employed to generate random telephone traffic with the specified distributions.

The specification of the exchange had the general form of Figure 2. Only POTS
calls (plain, ordinary telephone service) were supported. The exchange served 60
telephones. Call origination rates ranged from 8 to 15 originations/phone/hour. In-
stead of monitoring the signals between the exchange and the telephones as shown in
Figure 1, the supervisor was monitoring the hardware interface memory through
which the exchange control program sensed and controlled the exchange hardware.
This eliminated uncertainties in output signal recognition (the detection of output
signals did not suffer from signal recognition latencies), but it left input signal recog-
nition uncertainties in place.

The analysis given in Section 3 was used to evaluate the tradeoffs involved and to
select the supervision strategy. For the input-driven strategy, the Nf factor was 1 and
the processing cost was dominated by tc. D ranged from 1 to 3. For the output-driv-
en, the Nt factor was close to 1. However, for some output signals, the Ne factor was
large. This was the case whenever more than one Line Handler is involved in back-
ward propagation of outputs. For example, when ring tone to a phone is observed,
the tone must be traced back to the Line Handler for the called phone and from there
back again to the Line Handler for the caller. For these signals, Ne is the number of
telephones served by the exchange. Even for a small exchange, Ne2 is a very large
number. Although some heuristics could be built into the backward search, this alter-
native was rejected because of concern of ending up with an ad-hoc, difficult to
maintain supervisor.

Based on these considerations, the input-driven strategy was chosen for the super-
visor. To reduce the cost of implementation, the matcher of Figure 3 was combined
with the processes that produce external outputs (i.e. Line Handlers). For example,
the bottom half of the FSM of Figure 2b was converted into the segment of supervi-
sor Line Handler process shown in Figure 7. (To reduce the size of this figure, the
treatment of the OnHook signal is not shown.)

This figure contains two extensions to the standard SDL [11]. *0 stands for 'any
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output from the target system pertaining to the line being supervised by this process
instance'. The crossed oval denotes the termination of the process thread. The thread
is terminated when an external output indicate that the behavioral alternative repre-
sented by the thread has not been pursued by the target system. (This is the case, for
example, when a different tone is sent to the phone).

Note that such combination of functionality is possible only if it can be guaran-
teed that the external inputs are propagated through the supervisor model faster than
they propagate through the target system. This was the case with the emulated ex-
change. Alternative approaches are available for non-emulated applications.

Subsequent experience with the purely input-driven version of the supervisor has
shown that, during some intervals of operation of the target system, the supervisor
ran out of memory. This turned out to be due to the rapid growth in the number of
threads of resource management processes. This occurred when the random varia-
tions in telephone traffic resulted in a large number of almost simultaneous call orig-
inations. In retrospect, this is not surprising in light of equation (3.4), but this point
was only realized at a later time. What made this phenomenon worse was the posi-
tive feedback in its dynamics - the heavier the load on the exchange, the longer the
time interval between an OffHook and the response (dial tone or fast-busy tone) and
the larger the number of threads that coexist before they can be terminated.

To resolve this difficulty, it was noted that the processing of call originating off-
hooks typically results in dial tone output to the telephone. The product N1A, for the
dial tone output signal was 1 in the exchange considered. This has led to the decision
to introduce a degree of output-driven processing into the input-driven supervisor.
The output-driven processing only applied to the output signals that indicate what
the outcome of resource request was. The boundary at which the input and output
dri -en processing for these signals (dial and fast-busy tone) tone met was moved into
the resource manager. The idea of combining the functionality of input-driven super-
visor and -natcher was retained. In the implementation of the mixed strategy supervi-
sor, the originating OffHooks were propagated only to the Resource Manager. When
dial tone is observed on a phone, the Line Handler sends a notification to the re-
source manager. As a consequence, the number of behavioral alternatives that had to
be considered for the resource manager had become substantially smaller. The mem-
ory overflows no longer occurred. The underlying theory is described in [10].

5. Concluding Remarks

The paper considered real-time detection of failures of reactive systems. Failures are
detected by the supervisor, a unit that monitors the inputs and outputs from the target
system. The supervisor executes a model obtained from the specification of the target
system. The paper dealt with the case when the target system is specified in CCITT
SDL, a language based on communicating extended finite state machines. The focus
was on event-driven applications such as telecom switching.

A major issue in specification-based detection of failures are the nondeterminisms
intrinsic to the specification formalism. The supervisor should have no preconceived
idea about how the nondeterminisms should be resolved and consider any other al-
ternative as failure. The paper briefly overviewed the theory of beliefs which permits
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the supervisor to keep track of simultaneous behavioral alternatives.
The paper discussed two basic strategies for real-time failure detection, thv input

and the output-driven one. In the former, when an input is observed, the supervisor
determines what may happen in the future at system outputs. In the latter, the super-
visor tries to explain the system outputs from past inputs. The paper presented for-
mulas that estimate the processing and memory requirements for the two strategies.
The formulas were based on high-level model of the processing involved and give
only a rough estimate of the quantities estimated. They are principally useful in de-
termining the tradeoffs involved and in the choice of supervisor mode of operation.

The paper described an application of real-time failure detection to automatic col-
lection of call processing failure data in a small telephone exchange. The exchange
and its phones were emulated on a workstation. A purely input-driven strategy was
initially implemented. However, subsequent experience showed that this implemen-
tation was subject to excessive surges in processing and memory requirements under
certain input scenarios. To gain insight, the models and formulas presented above
were developed. A hybrid approach based on partly output-driven processing of cer-
tain output signals was implemented. This implementation no longer exhibited the
large surges in processing and memory requirements.
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Abstract
To improve dependability various voting schemes are implemented in computer
systems. The paper analyses reliability and safety of elementary and composed
majority voting systems. The tool for evaluation of such systems is also proposed.
It allows to choose an architecture suitable for given reliability and safety
requirements.

1 Introduction

To achieve higher reliability and fault tolerance of computer systems, high-quality
components and strict quality control procedure during the assembly phase can be
used, or some form of redundancy techniques can be implemented [1]. Both of these
complementary techniques lead to an increase in system cost. This is a price which
we pay to satisfy dependability requirements that are needed. Moreover, another
main point that faces the designers of computer systems is to detect errors at the
same time when the real-operations are performed. This means that a system does
not need to be stopped to find out which resources are faulty. To satisfy this
dependability and time requirements, the majority voting schemes are implemented
in computer systems. This means that a system must be composed of at least three
nodes (modules) [2] which are performing the same job and are establishing the
valid result by majority voting. In general, we have two types of elementary voting
schemes which will be named Centralized and Distributed Voting Architectures or
briefly CVA and DVA, respectively. Moreover, compositions of these fundamental
schemes can create more complex (hierarchical) systems which satisfy the highest
dependability requirements.

In the literature only centralized voting systems were analyzed very attentively
[1,31. Presently the importance of distributed systems is growing rapidly, so the
decentralized voting strategies should be considered and compared. Some ideas
referring to the hierarchical systems are given in [4], where some rollback recovery
strategies are analyzed. In [5] the matrix and channel voter based architectures are
considered. Note that, the latter corresponds to DVAs defined above. In the paper
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we concentrate on the dependability analysis of the basic architectures. We also
propose the systematic approach to evaluate the reliability and safety of more
complex voting architectures that are the composition of such elementary systems.

System reliability R(t) is the prubability of the correct system work (success)
during a certain period of time. System safety S(t) is the probability that the system
will survive for a certain period of time. To estimate these parameters, Markov
models are used [3]. Based on these models, reliability and safety of system nodes
are calculated in Section 2. Then elementary centralized and distributed voting
schemes are analyzed and compared in Sections 3 and 4, respectively. Section 5 I
introduces compositions of the elementary systems. The package program evaluating
dependability of different voting systems is presented in Section 6 and its functions
are given and discussed.

2 Dependability of System Nodes

Let consider that a computer system consists of n nodes (processing elements). Each
node can communicate with some other nodes by interconnect lines. Most of studies
in dependability of computer voting system assume that a system remains operable
as long as there exist suitable number of fault-free nodes. In consequence, the
dependence of system nodes have direct impact on the total system dependability.
In this section we concentrate on the dependability estimation of no-repairable and
repairable system nodes.

• Fault-free AFault-free

Detection Repair

Model- a Model- c

Fault-fr- eFault-free

P N I PI

Detection and Detection and
rXa irX 2 repair

Fau iltw Detection and

repair
Nodel- b Nodel- d

Fig I Reliabilitw Nodels of:
a) Non-repairable nods b) Partial self-repairable node
c) Self-direct repairable nods d) Self-indirect repairable node
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Let nodes consist of processing unit, memory unit(s), and input/output unit. In case
of no-repairable node, each fault of these units can cause the failure of the whole
node (see Fig. 1-a). Thus we can assume that:

Rk(t) - e (")N, where ), = X, + X. + Xk. (1)
Moreover, it is highly unreasonable to assume that each single node should totally

fail. Therefore we consider three types of self-repairable nodes. It is assumed that
either a node can survive some faults (see Fig 1-b) or full-success repair can take
place (Fig. 1-c,d). These models can be described by the differential equations.
Using Laplace transforms, the problem is reduced from a set of differential equation
to a set of simultaneous linear equations. For the model given in Fig. 1-c, they are
as follows:
SP,(S) - 1 = -kPl(S) + AP 3 (S)
SP 2(s) = XPI(S) - eP2(S)
Sp3(s) EP2(S) - jP 3(S)

where:
PI(O) + P2(O) + P3(O) - 1, and P1(O) = 1, P2(O) = P3(O) = 0.

R(t). 2(t) Noda1-b

Parin. Suggested Ialue

.% 0.008 /1000 hours"1, 2 0.004 /1000 hours
.P 0.006 /1000 hours

Nodel-c

"-X 0.008 /1000 hours
"•E 0.004 /1000 hours
p 0.006 /1000 hours

S•'•' SStM- Hodel_b ..

2(t)- Hodel-b

R(t)- NodLb

I I ttim*,
0 5 10 15 30 25 30 35 x2000H

Fig 2 Raliabilitw and Safrtw Curwus For adInls b and c

Solving these equations we obtain expressions with variables P,(S), P2(S) and P3(S)
which can be transformed directly to the time domain. Then we obtain:

PI(t) = A, el sin(cat+a,) + ki (2)
P2(t) = A2 e" sin(wtt+a 2) + k2 (3)
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whoem
w- .5[2(X•+qt+M) - (X2+&&+e 2)]"
a -

d,=/
k- dl/(a2W+w)
k2 = d21(a2+ 0)
b = (a-w 2+ag+dl) 2

A, = (11W) [(12 + W(2a+g)2}/{a2 +Ow2}J%
A2 = (11w) [{(a+1 2  + 2)I}{a 2 + 2 }]J'A
a, = arctan w(2a+g)/(ae-c+ag+d, ) - arctan (wia)
a 2 = arctan w/(a+d2) - arctan (w/a)

Then the reliability and safety of a node can be expressed as follows:
RN = P,(t) and SN=- P2 (t).

Fig. 2 shows some graphs for models b and c given in Fig. 1.

3 Centralized and Distributed Voting Architectures

CVA is the classical voting architecture (Fig 3) where each computing node (CN)
is described by one of the reliability models shown in Fig 1. The Centralized Voter
(CV) is made up of the Bus Interfacing Unit (BIU), which receives and sends some
information to the CN, and Voting Unit (VU) which in turn performs a majority
voting algorithm to establish valid results. It is assumed that the voter must be a
hard-core unit to achieve reliable work of the whole system. Then the CVA may
tolerate of maximum of f faulty CNs, where n > 2f+ 1. K out of n system is a
generalization of the voting architecture in which k of n nodes must work correctly
to perform system functions [3].

We assume that the reliability of the CVA can be determined as a function of the
reliability of the CN - RcN(t) and the reliability of the CV - Rcv(t).

oig 3eutrin e Li- A

Oo~ut ng .1• iVoter -- Final

' ( UU) a OlU

Comut ire tMod-n

Fig 3 Centralizedl Voting Architecture (CUA)
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Let us assume that all CNs are identical and have the same failure rates ?kN, and
the system can tolerate up to f < n-k faulty CNs, where k is the minimum number
of CNs that must be operational for a system to be reliable. The structure-based
reliability assessment of the system can be assessed by assuming a parallel-series
structural configuration. Then we define [1,3]:

p-k p
Ro^ t)=Rv(t) io RCN (t)'Pi) (1'RCN (t)Y= (4)

i-O ( if

where:
Xcv - is the failure rate of CV (k-v = X•nj + Xvu)

The safety of the system ScvA(t) can be is determined similarly as follows:
p-k p

SCVA (t) = SCV (t) E /SCN (t)(Pi) (1-Sos. (t))i (5)

i-O

Nodes Nod 2 Noden

..... ..... b
- . . Bus I.
-. Bus 2

Fig 4 Distributed Voting Architecture (lM)

1-l

DVA is ( as shown in Fig 4) composed of computing nodes (CNs) and redundant
buses. The nodes transmit data over the buses and each node can receive data from
all nodes including itself. The main difference between CVA and DVA architectures
is the type of voting. The nodes of DVAs contain BIU and VU, which are used for
communication and distributed voting respectively. An example of such architecture
is described in [5,6]. BIU modules arbitrate between two CNs when both of them
want to access the voter. It is also responsible for reconfiguring a faulty CN out of
the system. Then each VU is programmed to perform voting, which is a more
complex operation than a simple comparison of the received data from all of the
nodes, and also to perform the error logging. When voting is performed, final result
is transferred to each node by its respective BIU. Whenever data from a particular
node do not agree with the data from the other nodes, an error condition is latched
in each node which detects such an error. The latched information specifies the
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faulty node as well as the source of the faulty data. No hard-core is necessary
4 because voting function is distributed among the nodes and to eliminate f faulty
* CNs, n 2f+ 1. In case of Byzantine faults very popular in case of the distributed

voting n 3f + 1 [7]. Reliability of DVA is evaluated as follows:

p-k p

RA (t) =ý t)P' (I -1c (t))' (6)
' (i)

The Safety of the system SDvA(t) is determined in the same way as follows:
p-k p

•! SDvA (t) -- • [ •SCN (t)') (l-ScN (t))! (7)

4 Comparison of CVAs and DVAs

Let consider the reliability of the architectures presented in Sections 2 and 3. We
assume that a computing system consists of homogeneous nodes. This means that all
reliability parameters are the same for each node. Reliability of buses is described
by the reliability of BIU. Fig. 5 plots the reliability curves for a system of n=5
(then k=3) and for two different schemes (CVA and DVA). We assume that the
reliability of the voting unit and bus interfacing unit are higher than the reliability
of other units, i.e., the failure rate of a CN = the failure rate of the MU < the
failure rate of the VU < the failure rate of the BIU.

We restrict our analysis to mission time less than 5 years. The S-shaped curves are
obtained which are typical for redundant systems [1,3]. Above the knee, then CVA
and DVA have spare components that tolerate failures and keep the probability of
system access high. Once the system has exhausted its redundancy, however, there
is merely more hardware to fail. Because distributed voting systems have more
redundant components (except CNs) their reliability for the first period of time
(nearly for one year) is higher, then is lower in comparison to the CVA. This
tendency is also true for safety of system.

5 Hierarchical Compositions of Voting Schemes

Complex systems are typically structured hierarchically in multi-levels organization.
This means that such a system consists of smaller subsystems (each of which is
either CVA or DVA) and shared buses. We introduce a new class of voting
architectures named composed voting architectures. They are defined on the base
of the composition operation [8]. The simplest composition is a cascaded series of
CVAs or DVAs [3]. Other examples are shown in Fig 6. The scheme made up of
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r distributed voting subsystems, where their signals are coupled by a centralized
voter, is named Centralized - Distributed Voting Architecture and is denoted by
CDVA. Another architecture, is made up of a set of r centralized voting
architectures connected by redundant buses, is named Distributed - Centralized
Voting Architecture and denoted by DCVA. We assume that such a complex system
works correctly if at least m of r subsystems are fault-free (m out of r).
It is easy to note that for analysis of composed majority voting systems, we may

use the formulas given in Section 2 and 3 provided the node reliabilities formulas
are replaced by the subsystem reliabilities formulas. Fig 7 shows the curves for the
first two types of voting architectures discussed above and for model-c of node
reliability. In general, DCVAs are more reliable than CDVAs. The utilization of
self-repairing nodes leads to an increase of system reliability more significantly.

6 Reliability and Safety Estimation Package

Below, the newly developed program named "RASEP" is described. RASEP
(Reliability And Safety Estimation Package) is dedicated to analysis and comparison
of hierarchical voting architectures. The main modelling objective is to provide the
estinmates of reliability and safety of complex computer systems.

The prototype version of RASEP has been implemented in C programming
language and destined for a single processor environment of an IBM PC AT
computer running under the DOS. The system structure of RASEP is given in Fig.
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8. Presently, the program is working for reliability models of system units presented
in Fig 1. However, new models can be added, because the choice of a given model
is pointed by unique namu. The hierarchical system arcihitecture is described by the
following formula:

X [Y(U,), Y(U 2) ....... , Y(U)J (8)



284

Architecture Reliability Nodel
of

Definition $ustan Nodes

Reliability an Saf~ety Model of

Hierarchical Voting Schemtes

AnIas is Parameters

Reliability and Safety
Netrics

Fig 8 The Structure of MSEP

where:
X, Y - determine the type of architecture, e.g. CVA, DVA,
U1, i = 1,2,...,r - denotes either the kind of a system node or recursively a formula
like (8) describing architecture of the subsystem,
r - is the number of elements and it can be different on each level of the description.

For example architectures of Fig. 6 can be described in the following way:
CVA(DVA,, DVA2 . . . . . .. , DVA), DVA(CVA,, CVA 2, ...... , CVA).

It is easy to note that different types of architectures can be used on the same level
e.g.;
DVA(CVAI, DVA2(CVA3, DVA4)).

Based on the formula (8) and the expressions (1 7), reliability and safety models
are generated and concrete metrics are determined for given parameters of failure
and repair rates. The all figures presented in the paper are obtained by the RASEP.

7 Conclusions

There are some real computing systems where majority voting schemes are
implemented [1,5,6,7]. The aim of this paper is to pay attention to a new possibility
of generation of various voting architectures and to show some methods of their
evaluation. In order to support modelling and evaluation of those architectures, a
program "RASEP" has been built. Using this package, for a given reliability
requirements, we may choose the suitable architecture. Presently, the package is still
under development. The fault coverage and error latency will be included into the
program as well.
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Abstract

As an alternative to the classical approach for system specification on the
basis of a formalised general purpose language a graphical and
specialised language for application to safety critical systems is outlined.
The architecture of the language is constructed in accordance with the
functional and timing requirements typically for operationality in safety
systems. The fundamental and generic elements of the language are
presented: the syntax and semantics of function and net diagrams. A wide
range of operational behaviour (functional and timing) can be determined
by this graphical specification technique, several ways of specification
analysis are opened. Some examples show how to benefit from the
combination of illustrative graphical demonstration and strictly defined
rules for their interpretation.

1 Introduction: Universal versus Special Language

A main task in software technology is the computer based and (as far as possible)
automatic development of complex software systems. The essential basis for that is
settled in the early stages of the development process: The system's work has to be
specified in a way the computer can understand and operate with. For that reason and in
order to avoid severe misunderstandings, the elimination of which often requires
enormous efforts, a precise formulation of the intended system and its design is
required. Formal methods for system definition have been suggested which fulfil these
requirements to some extent.

The classical approach for a high-level system specification is the formal language
representation of its functionality. There are several language concepts [1,2,3], almost
all based on the data type description of the system properties: The idea is that a data
type is not just a definition or enumeration of its admissible values, but the concept of
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types also comprises of all operations that are meaningful for these data objects. The
way to the system's behaviour is opened by axiomatic rules regulating the relationship
between values and the admissible state transfers. The system 1roperties result from
rewriting sequences according to the stated rules and according to algebraic
transformation principles [4].

Most of these languages do not have the feature to project operational behaviour with
respect to time constraints and synchronisation of different processes which constitute
the total system. Another difficulty with these formal languages arises because of their
universality: To cover a wide range of applications, the vocabulary of these languages
has to be very elementary (set-theoretic notation and predicate calculus teminology),
and a system description normally consists of a complex set of relational rules. Because
only the relational structure of a system is formulated, even for relatively simple
systems the consequences of the stated rules and the final behaviour cannot be realised
immediately. Therefore, for proving that the specified system meets the original
requirements, extensive verification procedures have to be carried out [4].

The situation changes if the universality principle for the specification language is
dropped and a formalisation for a restricted application area is taken into consideration:
The language vocabulary for a special technical field can be adjusted to the particular
subjects, the combination rules (the grammar) can be arranged according to the
requirements of the special field.

The safety system in nuclear power plants for example (or similar plant protection

systems) fulfills the prerequisites of structurally and conceptually restricted
operational technique. The input quantities are regulated and the operational logics for I
the safety functions are constituted from elementary functional units, because the safety
functions follow simple operational patterns: Data acquisition and preparation,
accident control by evaluation and comparison of measurements and a few normed
reaction schemes. Usually this operational procedure runs simultaneously and
redundantly on different computers and is cyclically repeated. Therefore, a
synchronisation mechanism has to be implemented and timing constraints have to be
considered.

Along this operational paradigm a graphical language for specification and design of
such type of safety system is outlined in the next sections. For that, the proposals made
in [5,6] for designing a graphical, high-level language are taken up and modified for
special applications. In section 2 the architectural concept of the language is discussed:
The two essential constituents of the language, functional and net constructors, are
established. In section 3 a more detailed description of these two language features is
given: The combination of functional units to function diagrams is defined, and a
special class of time Petri nets is introduced for managing synchronisation and
regarding timing aspects. In section 4 the system's analysis on this very early stage of
the development and the possibilities of a direct implementation of the graphically
specified system is discussed. The main results of the report are summarised and a short
outlook on the future work is given.


